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Abstract

Proposals to increase research reproducibility frequently call for focusing on effect sizes

instead of p values, as well as for increasing the statistical power of experiments. However,

it is unclear to what extent these two concepts are indeed taken into account in basic bio-

medical science. To study this in a real-case scenario, we performed a systematic review of

effect sizes and statistical power in studies on learning of rodent fear conditioning, a widely

used behavioral task to evaluate memory. Our search criteria yielded 410 experiments com-

paring control and treated groups in 122 articles. Interventions had a mean effect size of

29.5%, and amnesia caused by memory-impairing interventions was nearly always partial.

Mean statistical power to detect the average effect size observed in well-powered experi-

ments with significant differences (37.2%) was 65%, and was lower among studies with

non-significant results. Only one article reported a sample size calculation, and our esti-

mated sample size to achieve 80% power considering typical effect sizes and variances (15

animals per group) was reached in only 12.2% of experiments. Actual effect sizes correlated

with effect size inferences made by readers on the basis of textual descriptions of results

only when findings were non-significant, and neither effect size nor power correlated with

study quality indicators, number of citations or impact factor of the publishing journal. In

summary, effect sizes and statistical power have a wide distribution in the rodent fear condi-

tioning literature, but do not seem to have a large influence on how results are described or

cited. Failure to take these concepts into consideration might limit attempts to improve

reproducibility in this field of science.

Introduction

Biomedical research over the last decades has relied heavily on the concept of statistical signifi-

cance–i.e. the probability that an effect equal to or larger than that observed experimentally

would occur by chance under the null hypothesis–and classifying results as “significant” or

“non-significant” on the basis of an arbitrary threshold (usually set at p< 0.05) has become
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standard practice in most fields. This approach, however, has well-described limitations that

can lead to erroneous conclusions when researchers rely on p values alone to judge results [1–

6]. First of all, p values do not measure the magnitude of an effect, and thus cannot be used by

themselves to evaluate its biological significance [7]. Moreover, the predictive value of a signifi-

cance test is heavily influenced by factors such as the prior probability of the tested hypothesis,

the number of tests performed and their statistical power [8]; thus, similar p values can lead to

very different conclusions in distinct scenarios [1].

Recent calls for improving research reproducibility have focused on reporting effect sizes

and confidence intervals alongside or instead of p values [6–9] and for the use of both informal

Bayesian inference [10] and formal data synthesis methods [11] when aggregating data from

multiple studies. The concepts of effect size and statistical power are central for such

approaches, as how much a given experiment will change a conclusion or an effect estimate

will depend on both. However, it is unclear whether they receive much attention from authors

in basic science publications. Discussion of effect sizes seems to be scarce, and recent data has

shown that sample size and power calculations are very rare in the preclinical literature

[12,13]. The potential impact of these omissions is large, as reliance on the results of signifi-

cance tests without consideration of statistical power can decrease the reliability of study con-

clusions [14].

Another issue is that, if effect size is not taken into account, it is difficult to adequately assess

the biological significance of a given finding. As p values will be low even for small effect sizes

if sample size is large, biologically trivial effects can be found to be statistically significant. In

preclinical studies, overlooking effect sizes will thus lead to inadequate assessment of therapeu-

tic potential, whereas in basic research it will cause difficulties in dissecting essential biological

mechanisms from peripheral modulatory influences [15]. The wealth of findings in the litera-

ture will thus translate poorly into better comprehension of phenomena, and the abundance of

statistically significant findings with small effect sizes can eventually do more harm than good.

This problem is made much worse when many of these studies have low positive predictive

values due to insufficient power, leading a large fraction of them to be false positives [8,14,16–

18].

To analyze how effect sizes and statistical power are taken into account in the description

and publication of findings in a real-case scenario of basic biomedical science, we chose to per-

form a systematic review of articles on learning of rodent fear conditioning, probably the most

widely used behavioral task to study memory in animals [19]. Focusing on this task provides a

major advantage in the fact that the vast majority of articles use the same measure to describe

results (i.e. percentage of time spent in freezing behavior during a test session). As effect sizes

are comparable across studies, studying their distribution allows one to estimate the statistical

power of individual experiments to detect typical differences.

Our first objective in this study is to analyze the distribution of effect sizes and statistical

power in a large sample of articles using different interventions, showing how they are re-

lated to the outcome of statistical significance tests. Next, we will study whether these two mea-

sures are correlated, in order to look for evidence of publication bias and effect size inflation.

We will also correlate effect sizes and variances with different aspects of experimental design,

such as species, sex and type of conditioning, as well as with indicators of risk of bias. To

inquire whether effect size and power are taken into consideration by authors when interpret-

ing findings, we will evaluate whether they correlate with effect size inferences made by readers

based on textual descriptions of results in the articles. Finally, we will analyze whether mean

effect size and power correlate with article-level metrics, such as number of citations and

impact factor of the publishing journal, to explore how they influence the publication of

results.

Effect sizes and statistical power in fear conditioning
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Results

Article search and inclusion

As previously described in a protocol published in advance of full data collection [20], we per-

formed a PubMed search for fear conditioning articles published online in 2013. The search

process (Fig 1) yielded 400 search hits, of which 386 were original articles that were included if

they fulfilled pre-established criteria (see Methods). Two investigators examined all included

articles, and agreement for exclusions measured on a double-screened sample of 40 articles

was 95%. This led to a final sample of 122 articles and 410 experiments, used to build the data-

base provided as S1 Data.

Distribution of effect sizes among experiments

For each experiment, we initially calculated effect size as the relative difference (i.e. percentage

of change) in the freezing levels of treated groups when compared to controls. As shown in Fig

Fig 1. Study flow diagram. Our PubMed search yielded 400 results, of which 14 were excluded based on initial

screening of titles and abstracts and 386 were selected for full-text analysis. This led to the inclusion of 122 articles,

containing a total of 410 comparisons (i.e. individual experiments). The main reasons for exclusion are listed in the

figure, in compliance with the PRISMA statement [21].

https://doi.org/10.1371/journal.pone.0196258.g001
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2A, this leads interventions that enhance memory acquisition (i.e. those in which freezing is

significantly higher in the treated group) to have larger effect sizes than those that impair it

(i.e. those in which freezing is significantly lower in the treated group) due to an asymmetry

that is inherent to ratios. To account for this and make effect sizes comparable between both

types of interventions, we used a normalized effect size, with difference expressed as a percent-

age of the highest freezing value between groups (Fig 2B) [11].

Use of absolute differences in freezing instead of relative ones led to similar, but more con-

strained distributions (S1 Fig) due to mathematical limits on absolute differences. Freezing lev-

els in the reference group correlated negatively with relative effect size and pooled coefficient

of variation (i.e. the ratio between the sample size-weighted pooled SD and the pooled mean);

however, normalization by the highest-freezing group reduced this effect (S2A–S2C Fig).

Absolute effect size, on the contrary, showed a positive correlation with freezing levels in the

Fig 2. Distribution of effect sizes. (A) Distribution of effect sizes, calculated as % of control group freezing.

Interventions were divided into memory-impairing (-48.6 ± 18.1%, n = 146), memory-enhancing (71.6 ± 53.2%,

n = 53) or non-effective (-1.8 ± 26.2%, n = 211) for visualization purposes, according to the statistical significance of

the comparison performed in the article. Additionally, the whole sample of experiments is shown in grey (-9.0 ± 47.5%

[-13.6 to -4.4], n = 410). Values are expressed as mean ± SD [95% confidence interval]. Lines and whiskers in the inset

express median and interquartile interval. (B) Distribution of normalized effect sizes, calculated as % of the group with

the highest mean (i.e. control group for memory-impairing interventions, or treated group for memory-enhancing

interventions).

https://doi.org/10.1371/journal.pone.0196258.g002
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control or highest-freezing group (S2D–S2F Fig). We also calculated effect sizes as standard-

ized mean differences (i.e Cohen’s d, S3 Fig), but chose to use relative percentages throughout

the study, as they are more closely related to the way results are expressed in articles.

All 410 experiments combined had a mean normalized effect size of 29.5 ± 22.4%

(mean ± SD; 95% CI [27.4 to 31.7]). When results were divided according to the statistical

comparison originally performed in the article, mean normalized effect size was 48.6 ± 18.1%

for memory-impairing interventions, 37.6 ± 14.2% for memory-enhancing interventions and

14.4 ± 14.2% for non-effective interventions–i.e. those in which a significant difference

between groups was not found. This does not imply that data in each of these groups repre-

sents effects coming from a different distribution, or that significant and non-significant

results correspond to true positive or true negative effects. On the contrary, each group likely

represents a mixture of heterogeneous effect size distributions, as sampling error and lack of

statistical power can directly impact the chances of a result achieving statistical significance.

Distribution of mean effect sizes at the article level showed similar results to those found at the

level of experiments (S4 Fig).

The distribution of effect sizes shows that the vast majority of memory-impairing interven-

tions cause partial reductions in learning, leaving the treated group with residual freezing levels

that are higher than those of a non-conditioned animal. In fact, in all 35 memory-impairing

experiments in which pre-conditioning freezing levels were shown for the treated group, these

were lower than those observed in the test session–with p values below 0.05 in 25 (78%) out of

the 32 cases in which there was enough information for us to perform an unpaired t test

between sessions (S5 Fig). It is also worth noting that 26.5% of non-significant experiments

had an effect size greater than 20%, suggesting that these experiments might have been under-

powered. With this in mind, we went on to evaluate the distribution of statistical power

among studies.

Distribution of statistical power among experiments

For analyzing statistical power, we first sought to evaluate the distribution of sample sizes and

coefficients of variation (both of which are determinants of power). As shown in Fig 3A, most

experiments had mean sample sizes between 8 and 12 animals/group, and this distribution did

not vary between enhancing, impairing and non-effective interventions. On the other hand,

higher coefficients of variation were more frequent among non-effective interventions (Fig

3B). This difference was partly explained by freezing levels in the reference group–which cor-

related negatively with coefficients of variation (S2G–S2I Fig) and were lower on average for

non-significant experiments (49.3% vs. 52.9% in memory-impairing and 61.3% in memory-

enhancing experiments).

Based on each experiment’s variance and sample size, we built power curves to show how

power varies according to the difference to be detected at α = 0.05 for each individual experi-

ment (Fig 3C–3E). To detect the mean effect size of 45.6% found for nominally effective inter-

ventions (i.e. those leading to statistically significant differences between groups), mean

statistical power in our sample was 0.75 ± 0.26; 95% CI [0.72–0.78] (Fig 3F). This estimate,

however, is an optimistic, upper-bound calculation of the typical effect size of biologically

effective interventions (from here on referred to as “upper-bound ES”): as only large effects

will be detected by underpowered studies, basing calculations only on significant results leads

to effect size inflation [14]. A more realistic estimate of effect size was obtained based only on

experiments that achieved statistical power above 0.95 (n = 60) in the first analysis (and are

thus less subject to effect size inflation), leading to a mean effect size of 37.2%. Predictably,

mean statistical power to detect this difference (“intermediate ES”, Fig 3G) fell to 0.65 ± 0.28

Effect sizes and statistical power in fear conditioning
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Fig 3. Distribution of sample size, variation and statistical power. (A) Distribution of mean sample size between groups. Gray bars show the distribution of the whole

sample, while colored lines show distributions of impairing (n = 120), enhancing (n = 39) and non-significant (n = 177) experiments separately for visualization

purposes. (B) Distribution of coefficients of variation (pooled standard deviation/pooled mean) for each type of experiment. (C) Distribution of statistical power for

memory-impairing interventions: based on each experiment’s variance and sample size, power varies according to the difference to be detected for α = 0.05. Dashed

Effect sizes and statistical power in fear conditioning
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[0.62–0.68]. Using the mean effect size of all experiments (“lower-bound ES”, 29.5%) led to an

even lower power of 0.52 ± 0.29 [0.49–0.56] (Fig 3H), although this estimate of a typical effect

size is likely pessimistic, as it probably includes many true negative effects.

Interestingly, using mean absolute differences instead of relative ones to calculate statistical

power led to a smaller number of experiments with very low power (S6 Fig). This suggests that

some of the underpowered experiments in the first analysis had low freezing levels in the refer-

ence group, as in this case even large relative differences will still be small when expressed in

absolute terms for statistical analysis. Also of note is that, if one uses Cohen’s traditional defini-

tions of small (d = 0.2), medium (d = 0.5) and large (d = 0.8) effect sizes [22] as the basis for

calculations, mean power is 0.07 ± 0.01, 0.21 ± 0.07 and 0.44 ± 0.13, respectively (S7 Fig).

These much lower estimates reflect the fact that effect sizes are typically much larger in rodent

fear conditioning than in psychology experiments, for which this arbitrary classification was

originally devised, and suggests that it might not be applicable to other fields of science.

A practical application of these power curves is that we were able to calculate the necessary

sample size to achieve desired power for each effect size estimate, considering the median coef-

ficient of variation (as well as the 25th and 75th quartiles) of experiments in our sample (Fig 3I–

3K). Thus, for an experiment with typical variation, around 15 animals per group are needed

to achieve 80% power to detect our ‘intermediate effect size’ of 37.2%, which we consider our

more realistic estimate for a typical effect size in the field. Nevertheless, only 12.2% of compari-

sons in our sample had a sample size of 15 or above in each experimental group, suggesting

that such calculations are seldom performed.

We also analyzed the distributions of statistical power at the level of articles instead of indi-

vidual experiments. Results for these analyses are shown in S8 Fig, and are generally similar to

those obtained for the experiment-level analysis, except that the long tail of non-significant

experiments with large coefficients of variation is not observed. This suggests that experiments

with large variation and low power are frequently found alongside others with adequate power

within the same articles. It is unclear, however, whether this means that the low power of some

experiments is a consequence of random fluctuations of experimental variance, or if these

experiments use protocols that lead to larger coefficients of variation–for example, by generat-

ing lower mean levels of freezing (see S2 Fig).

Correlation between effect sizes and statistical power/sample size

We next sought to correlate normalized effect size with sample size and statistical power for

each experiment. The presence of a negative correlation between these variables has been

considered an indirect measure of publication bias [23], as articles with low power or sample

size will be subject to effect size inflation caused by selective reporting of significant findings

[24]. In our analysis, no correlation was found between effect size and sample size (Fig 4A,

r = 0.0007, p = 0.99); on the other hand, a positive correlation between effect size and coeffi-

cient of variation was observed (Fig 4B, r = 0.37, p<0.0001). Part of this correlation was medi-

ated by the association of both variables with freezing levels (S2 Fig), but the correlation

remained significant after adjustment for this variable (r = 0.32, p<0.001).

lines show the three effect sizes used for point estimates of power in F, G and H. (D) Distribution of statistical power for memory-enhancing interventions. (E)

Distribution of statistical power for non-effective interventions. (F) Distribution of statistical power to detect the upper-bound effect size of 45.6% (right dashed line on

C, D and E) for impairing (red), enhancing (blue), non-significant (yellow) and all (grey) experiments. Lines and whiskers express median and interquartile interval. (G)

Distribution of statistical power to detect the intermediate effect size of 37.2% (middle dashed line on C, D and E). (H) Distribution of statistical power to detect the

lower-bound effect size of 29.5% (left dashed line on C, D and E). (I) Sample size vs. statistical power to detect the upper-bound effect size of 45.6%. Continuous lines

use the 50th percentile of coefficients of variation for calculations, while dotted lines use the 25th and 75th percentiles. (J) Sample size vs. statistical power to detect the

intermediate effect size of 37.2%. (K) Sample size vs. statistical power to detect the lower-bound effect size of 29.5%.

https://doi.org/10.1371/journal.pone.0196258.g003
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Because of this, negative correlations between effect size and power were observed for the

three effect size estimates used (Fig 4C–4E), although they were larger for the lower-bound

estimate (Fig 4E, r = -0.21, p<0.0001) than for the intermediate (Fig 4D, r = -0.16, p = 0.003)

and upper-bound (Fig 4C, r = -0.12, p = 0.03) ones due to a ceiling effect on power. This

negative correlation is observed even when power is calculated based on absolute differences

(S9 Fig), for which the correlation between coefficients of variation and reference freezing lev-

els is in the opposite direction of that observed with relative differences (see S2 Fig). This

strongly suggests that the correlation represents a real phenomenon related to publication bias

and/or effect size inflation, and is not merely due to the correlation of both variables with

freezing levels. A correlation between effect size and power is also observed when both are cal-

culated on the basis of standardized mean differences (i.e. Cohen’s d) (S10 Fig). In this case,

the line separating significant and non-significant results for a given sample size is clearer, as

significance is more directly related to standardized mean differences. Expressing effect sizes

in Cohen’s d also makes effect size inflation in experiments with low sample size and power

more obvious.

Fig 4. Correlations between effect size, variation and statistical power. (A) Correlation between normalized effect size and mean sample size. No correlation is

found (r = 0.0007, p = 0.99; r = -0.26, p = 0.64 after adjustment), although sample size variation is limited. (B) Correlation between normalized effect size and

coefficient of variation. Correlation of the whole sample of experiments yields r = 0.37, p<0.0001� (n = 336; r = 0.32, p<0.001 after adjustment for freezing levels).

(C) Correlation between normalized effect size and statistical power based on upper-bound effect size of 45.6%. Correlation of the whole sample of experiments

yields r = -0.12, p = 0.03 (r = 0.11, p = 0.84 after adjustment for freezing levels), but distribution is skewed due to a ceiling effect on power. (D) Correlation between

normalized effect size and statistical power based on intermediate effect size of 37.2%; r = -0.16, p = 0.003� (r = -0.16, p = 0.48 after adjustment). (E) Correlation

between normalized effect size and statistical power based on lower-bound effect size of 29.5%; r = -0.21, p<0.0001� (r = -0.1, p = 0.06 after adjustment). Asterisks

indicate significant results according to Holm-Sidak correction for 28 experiment-level correlations.

https://doi.org/10.1371/journal.pone.0196258.g004
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Interestingly, the correlation between effect size and power was driven by a scarcity of

experiments with large effect size and high power. This raises the possibility that truly large

effects are unusual in fear conditioning, and that some of the large effect sizes among low-pow-

ered experiments in our sample are inflated. On the other hand, a pattern classically suggesting

publication bias–i.e. a scarcity of low-powered experiments with small effects [23]–is not

observed. It should be noted, however, that our analysis focused on individual experiments

within articles, meaning that non-significant results were usually presented alongside other

experiments with significant differences; thus, this analysis does not allow us to assess publica-

tion bias at the level of articles.

Effects of methodological variables on the distributions of effect sizes and

coefficients of variation

We next examined whether the distributions of effect sizes and coefficients of variation were

influenced by type of conditioning, species or sex of the animals (Fig 5). Mean normalized

effect size was slightly larger in contextual than in cued fear conditioning (33.2% vs. 24.4%,

Student’s t test p<0.0001) and markedly larger in males than in females (30.3% vs. 18.9% vs.

34.2% for experiments using both, one-way ANOVA, p = 0.004), but roughly equivalent

between mice and rats (29.8% vs. 29.1%, p = 0.76). Coefficients of variation were higher in con-

textual conditioning (0.51 vs. 0.41, Student’s t test p = 0.001), in experiments using animals of

both sexes (0.62 vs. 0.44 in males and 0.41 in females, one-way ANOVA, p<0.0001), and in

those using mice (0.50 vs. 0.42, Student’s t test, p = 0.008), although the latter difference was

not statistically significant after correction for multiple comparisons. All of these associations

should be considered correlational and not causal, as specific types of conditioning or animals

of a particular species or sex might be more frequently used for testing interventions with par-

ticularly high or low effect sizes. Also of note is the fact that experiments on males were 7.7

times more common than those on females in our sample (277 vs. 36), indicating a strong pref-

erence of researchers for using male animals.

We also examined whether effect sizes and coefficients of variation differed systematically

according to the type, timing or anatomical site of intervention (S11 Fig). Effect sizes did not

differ significantly between surgical, pharmacological, genetic and behavioral interventions

(38.7% vs. 28.1% vs. 30.5% vs. 25.8% one-way ANOVA, p = 0.12), although there was a trend

for greater effects with surgical interventions (which were uncommon in our sample). No dif-

ferences were found between the mean effect sizes of systemic and intracerebral interventions

(28.7% vs. 30.3%, Student’s t test, p = 0.45) or between those of pre- and post-training inter-

ventions (30.5% vs. 25.4%, Student’s t test, p = 0.07), although pre-training interventions had

slightly higher coefficients of variation (0.49 vs 0.37, Student’s t test p = 0.0015). Coefficients of

variation did not differ significantly between surgical, pharmacological, genetic and behavioral

interventions (0.41 vs. 0.43 vs. 0.50 vs. 0.50, one-way ANOVA p = 0.08) or between systemic

and intracerebral interventions (0.49 vs. 0.45, Student’s t test p = 0.15). Once again, these dif-

ferences can only be considered correlational and not causal.

Risk of bias indicators and their relationship with effect size and power

As previous studies have shown that measures to reduce risk of bias are not widely reported in

animal research [12,13], we investigated the prevalence of these measures in our sample of fear

conditioning articles, and evaluated whether they were correlated with effect sizes or power.

Table 1 shows the percentage of articles reporting 7 items thought to reduce risk of bias in ani-

mal studies, adapted and expanded from the CAMARADES checklist [25]. Although some

items were reported in most articles (statement of compliance with animal regulations,

Effect sizes and statistical power in fear conditioning
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Fig 5. Effect sizes and coefficients of variation across different protocols, species and sexes. Colors indicate memory-enhancing (red), memory-impairing

(blue) or non-effective (yellow) experiments, all of which are pooled for analysis. Lines and whiskers express median and interquartile interval. (A) Distribution

of effect sizes across cued (n = 171) and contextual (n = 239) conditioning protocols. Student’s t test, p<0.0001�. (B) Coefficients of variation across cued

(n = 145) and contextual (n = 191) conditioning protocols. Student’s t test, p = 0.001�. (C) Distribution of effect sizes across experiments using mice (n = 237) or

rats (n = 173). Student’s t test, p = 0.76. (D) Coefficients of variation across experiments using mice (n = 193) or rats (n = 143). Student’s t test, p = 0.008. (E)

Distribution of effect sizes across experiments using male (n = 277), female (n = 36) or both (n = 67) sexes. One-way ANOVA, p = 0.004�; Tukey’s post-hoc test,

male vs. female p = 0.01, male vs. both p = 0.40, female vs. both p = 0.003. 30 experiments were excluded from this analysis for not stating the sex of animals. (F)

Coefficients of variation across experiments using male (n = 233), female (n = 28) or both (n = 60) sexes. One-way ANOVA, p<0.0001�; Tukey’s test, male vs.

female p = 0.85, male vs. both p<0.0001, female vs. both p = 0.0006. For coefficient of variation analyses, 74 experiments were excluded due to lack of

information on sample size for individual groups. Asterisks indicate significant results according to Holm-Sidak correction for 14 experiment-level

comparisons.

https://doi.org/10.1371/journal.pone.0196258.g005
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adequate description of sample size, blinding), others were virtually inexistent, such as the

presence of a sample size calculation (1 article) and compliance with the ARRIVE guidelines

[26] (0 articles). Contrary to previous reports in other areas [27–30], however, no significant

association was found between reporting of these indicators and either the percentage of sig-

nificant experiments, the mean effect size of effective interventions or the mean statistical

power of experiments in our sample (S12 Fig). The region of origin of the article also had no

correlation with either of these variables (S13 Fig). Nevertheless, it should be noted that this

analysis used only experiments on fear conditioning acquisition or consolidation, which were

not necessarily the only results or the main findings presented in these articles. Thus, it is pos-

sible that other results in the article might have shown higher correlation with risk of bias

indicators.

Correlation between effect sizes/statistical power and description of results

Given the wide distribution of effect sizes and statistical power in the literature on fear condi-

tioning learning, we tried to determine whether these were taken into account by authors

when describing results in the text. For each included comparison, we extracted the words or

phrases describing the results of that experiment in the text or figure legends, and asked 14

behavioral neuroscience researchers to classify them according to the implicit information

they contained about effect size. For comparisons with significant differences, terms were to

be classified as implying strong (i.e. large effect size) or weak (i.e. small effect size) effects, or as

neutral terms (i.e. those from which effect size could not be deduced). For non-significant dif-

ferences, terms were to be classified as implying similarity between groups, as suggesting a

trend towards difference, or as neutral terms (i.e. those from which the presence or absence of

a trend could not be deduced). From the average of these classifications, we defined a score for

each term (S1 and S2 Tables) and correlated these scores with the actual effect size and statisti-

cal power of experiments.

Agreement between researchers over classification was low, especially for terms describing

significant differences: single measures intraclass correlation coefficients (reflecting the reli-

ability of individual researchers when compared to the whole sample) were 0.234 for signifi-

cant interventions and 0.597 for non-significant ones, while average measures coefficients

(reflecting the aggregated reliability of the sample) were 0.839 and 0.962, respectively. This,

along with a trend for the use of terms with little effect size information (“increase”, “decrease”,

“significantly more”, “significantly less”, etc.), led most terms describing effective interventions

to receive intermediate scores approaching 1 (i.e. neutral). For these interventions, no correla-

tions were observed between this score and either effect size (r = -0.05, p = 0.48) or statistical

power (r = 0.03, p = 0.73) (Fig 6A and 6B). For non-effective interventions, a significant corre-

lation between description score and effect size was observed (Fig 6C, r = 0.28, p = 0.0002), as

larger effect sizes were associated with terms indicating a trend for difference. Still, no

Table 1. Number of articles including quality assessment items.

Quality

assessment

item

Randomization of

allocation

Blinded or

automated

assessment

Sample size

calculation

Exact sample

size description

Statement of compliance

with regulatory

requirements

Statement on

conflict of

interest

Statement of

compliance with

ARRIVE

Number of

articles (%)

18/77

(23.4%)

92/122

(75.4%)

1/122

(0.8%)

98/122

(80.3%)

118/122

(96.7%)

66/122

(54.1%)

0/122

(0%)

Percentages were calculated using all 122 articles, except in the case of randomization, which was calculated based on 77 articles, as it is not applicable to genetic

interventions. In the case of blinding, 68 articles used automated analysis and 24 used blinded observers, totaling 92 articles scored for this item.

https://doi.org/10.1371/journal.pone.0196258.t001
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correlation was observed between textual descriptions of results and power (Fig 6D, r = 0.03,

p = 0.74). Moreover, statistical power was rarely mentioned in the textual description of

results–the term “power” was used in this context in only 4 articles–suggesting that it is largely

ignored when discussing findings, as shown in other areas of research [31].

Correlations of effect size, power and study quality with article citations

Finally, we investigated whether the percentage of significant experiments reported in each

article, mean effect size for effective interventions, mean statistical power or a composite study

quality score (aggregating the 7 risk of bias indicators described in Table 1) correlated with

article impact, as measured by the number of citations (Fig 7) and the impact factor of the pub-

lishing journal (S14 Fig). None of the correlations was significant after adjustment for multiple

comparisons, although a weak positive correlation was observed between study quality score

Fig 6. Correlation between description of results and effect size/statistical power. Description scores refer to the mean score given by 14 neuroscience

researchers who rated terms as “weak” (0), “neutral” (1) or “strong” (2) in the case of those describing significant differences, or as “similar” (0), “neutral” (1)

or “trend” (2) in the case of those describing non-significant ones. (A) Correlation between normalized effect size and description score for significant

results. r = -0.05, p = 0.48 (n = 195). (B) Correlation between statistical power and description score for significant results. r = 0.03, p = 0.73 (n = 155). (C)

Correlation between normalized effect size and description score for non-significant results. r = 0.28, p = 0.0002� (n = 174). (D) Correlation between upper-

bound estimate of statistical power and description score for non-significant results. r = 0.03, p = 0.74 (n = 146). Asterisk indicates significant result

according to Holm-Sidak correction for 28 experiment-level correlations.

https://doi.org/10.1371/journal.pone.0196258.g006
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and impact factor (r = 0.22, p = 0.01), driven by associations of higher impact factors with

blinding (Student’s t test with Welch’s correction, p = 0.0001), conflict of interest reporting

(Student’s t test with Welch’s correction, p = 0.03) and exact sample size description (Student’s

t test, p = 0.03). It should be noted that the distribution of impact factors and citations is

heavily skewed, limiting the use of linear correlations as planned in the original protocol–nev-

ertheless, exploratory non-parametric analysis of the data confirmed the lack of significance of

correlations. Once again, our data refers only to experiments on fear conditioning acquisition

or consolidation–therefore, other data in the articles could feasibly account for the variation in

impact factor and citations.

Discussion

In light of the low reproducibility of published studies in various fields of biomedical research

[32–34] which is thought by many to be a consequence of low statistical power and excessive

reliance on significance tests [8,16] calls have been made to report effect sizes and confidence

intervals alongside or in place of p values [4,6,7,9] and to increase statistical power [14,31,35].

Fig 7. Correlation between citations and percentage of significant experiments, effect size and statistical power. Citations were obtained for all articles on

August 26th, 2016. (A) Correlation between % of significant results per article and citations. r = -0.03, p = 0.75 (n = 121). (B) Correlation between mean

normalized effect size of effective interventions and citations. r = 0.097, p = 0.34 (n = 98). (C) Correlation between mean statistical power (upper-bound

estimate) and citations. r = -0.08, p = 0.40 (n = 104). (D) Correlation between study quality score and citations. r = 0.09, p = 0.31 (n = 121). According to Holm-

Sidak correction for 8 article-level correlations, none is significant.

https://doi.org/10.1371/journal.pone.0196258.g007
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However, it is unclear whether these proposals have had much impact on most fields of basic

science. We have taken one particular memory task in rodents, in which outcomes and effect

sizes are described in a standardized way and are thus comparable across studies, in order to

analyze how these two concepts are dealt with in the study of fear learning.

Our first main finding is that most amnestic interventions targeting fear acquisition or con-

solidation cause partial effects, with residual freezing remaining significantly above pre-condi-

tioning levels in 78% of the experiments with available data. Moreover, most of the large effect

sizes in our sample were found in underpowered studies, suggesting that they could represent

inflated estimates [24]. This is not necessarily unexpected: as fear memories depend on a well

distributed network, both anatomically and molecularly [19], it seems natural that most inter-

ventions directed at a specific site or pharmacological target will modulate learning rather than

fully block it. This creates a problem, however, when effect sizes are not considered in the anal-

ysis of experiments, as it is not possible to differentiate essential mechanisms of memory for-

mation from modulatory influences on the basis of statistical significance alone. This can lead

to a situation in which accumulating evidence, even if correct, can confuse rather than advance

understanding, as has been suggested to occur in fields such as long-term potentiation [15]

and apoptosis [36].

Matters are complicated further by the possibility that many of these findings are false posi-

tives and/or false negatives. The prevalence of both in relation to true positives and negatives

depends crucially on statistical power, which in turn depends on sample size. Calculating the

actual power of published experiments is challenging, as the difference used for the calcula-

tions should not be based on the observed results–which leads power analysis to become circu-

lar [18,37]. Thus, statistical power depend on expected effect sizes, which are arbitrary by

nature–although they can sometimes be estimated from meta-analyses [14], which were not

performed in this study due to the large variety of heterogeneous interventions. However, by

considering the mean effect size for well-powered experiments in our sample, we arrived at an

estimate of around 37.2% that might be considered “typical” for a published experiment with

an intervention affecting fear conditioning acquisition or consolidation. Using the sample size

and variation for each experiment, we found mean statistical power to detect this effect size to

be 65% in our sample.

As sample size calculations are exceedingly rare, and insufficient power seems to be the

norm in other fields of neuroscience as well [14,18], it is quite possible that classically used

sample sizes in behavioral neuroscience (and perhaps in other fields of basic science) might

thus be insufficient. Considering median variances and our intermediate effect size estimate,

the ideal sample size to achieve 80% power would be around 15 animals per group. This num-

ber, however, was reached in only 12.2% of cases in our sample, as most experiments had sam-

ple sizes of 8 to 12, informally considered to be standard in the field. This seems to confirm

recent models suggesting that current incentives in science favor the publication of underpow-

ered studies [16,38], although they could also be due to restrictions on animal use imposed by

ethical regulations. That said, average power in our sample for typical effect sizes was higher

than those described in other areas of neuroscience by Button et al. [14]; however, this could

reflect the fact that effect sizes in their study were calculated by meta-analysis, and might be

smaller than those derived by our method of estimation, or underestimated due to the inclu-

sion of negative results [18]. One should also note that the abovementioned power estimates

were found to vary widely across subfields of neuroscience [18]–in this sense, the power distri-

bution of fear conditioning studies seems to resemble those found for psychology and neuro-

chemistry studies, in which a reasonable number of well-powered studies coexist with

underpowered ones.
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On the other hand, our statistical power to detect Cohen’s definitions of small, medium and

large effects [22] were even lower than those recently reported in cognitive neuroscience stud-

ies by Szucs and Ioannidis (2017). That said, our data provides a strong cautionary note against

the use of these arbitrary definitions, originally devised for psychology studies, in calculations

of statistical power, as 88.7% of statistically significant experiments (or 48.2% of the whole

sample) fell into the “large” category of Cohen’s original proposal. This suggests that labora-

tory studies in rodents have larger effects than those found in human psychology (an unsur-

prising finding, given the greater invasiveness of the interventions), as has also been found in

meta-analyses studying similar treatments in laboratory animals and humans [39], demon-

strating that what constitutes a small or large effect can vary between different fields of science.

An old-established truism in the behavioral neuroscience field–as well as in other fields of

basic science–is that experiments in females tend to yield more variable results due to estrous

cycle variations [40]. However, at least in our analysis, coefficients of variation were similar

between experiments in males and females (and predictably higher in experiments using

both), as has been found in other areas of science [41,42] suggesting that this belief is false.

Nevertheless, adherence to it likely accounts for the vast preponderance of experiments on

male animals, which were nearly 8 times more common than those in females in our sample–a

sex bias greater than those described for most fields [43] although smaller than that recently

reported for rodent models of anxiety [44]. Previous work in clinical [45] and preclinical

[40,43] data has pointed out the drawbacks of concentrating experiments in male populations.

However, despite calls for increasing the number of studies on females [46] this problem

remains strikingly present in the fear learning field.

Concerning risk of bias indicators, the prevalence found in our sample was roughly similar

to previous reports on animal studies for randomization and conflict of interest reporting [13]

but were distinctly higher for blinded assessment of outcome, largely because 59% of articles

used automated software to measure freezing, which we considered to be equivalent to blinded

assessment. If one considers only articles reporting manual scoring of freezing, however,

blinding was reported in 57% of cases, which is still higher than most areas of preclinical sci-

ence [13]. As described previously in many fields [12,13,31] sample size calculations were

almost non-existent, which helps to explain why many experiments are underpowered. Inter-

estingly, although we analyzed a sample of papers published 3 years after the ARRIVE guide-

lines they were not mentioned in any of the articles, suggesting that their impact, at least in the

field of behavioral neuroscience, was still rather limited at this time.

Contrary to previous studies, however, we did not detect an impact of these risk of bias

indicators on article-level measures such as percentage of fear conditioning learning experi-

ments with significant results, mean effect size of significant experiments and mean statistical

power. This could mean that, compared to preclinical studies, bias towards positive results is

lower in studies on fear learning. However, it seems more likely that, as we selected particular

experiments within papers containing other results, we were not as likely to detect effects of

bias on article-level measures. As basic science articles typically contain numerous results, it is

perhaps less likely that all comparisons will be subject to bias towards positive findings. More-

over, the experiments in our sample probably included negative controls for other findings,

which might have been expected to yield non-significant results. Thus, although our results do

not indicate an impact of bias on article-level results, they should not be taken as evidence that

this does not occur.

The same reasoning applies for the evaluation of publication bias, in which the experiments

we analyzed could have been published along with positive ones. Nevertheless, we were still

able to detect a negative correlation between effect size and statistical power, suggesting effect

size inflation due to low statistical power to be present in studies on fear conditioning learning.
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Although the pattern we detected was less suggestive of actual publication bias, our capability

to detect it was likely smaller due to the choice to use experiments within articles. Other meth-

ods to detect publication bias, such as the Ioannidis excess significance test [47] and the use of

p-value distributions [48–50] were also considered, but found to be inappropriate for use with

our methodology (in the first case due to the absence of a meta-analytic effect estimate, and in

the second because exact p values were infrequently provided in articles).

One of the most interesting findings of our article was the lack of correlation of effect sizes

inferred from textual description of results with the actual effect sizes of significant experi-

ments, as well as with statistical power. Although this suggests that these measures are not usu-

ally considered in the interpretation of results, there are caveats to this data. First of all,

agreement between what words describe a “strong” or “weak” effect between researchers evalu-

ating them was strikingly low, suggesting that written language is a poor descriptor for quanti-

tative data. Moreover, the fact that most terms used to describe differences were neutral to

effect sizes (e.g. “significantly higher”, “significantly lower”, etc.) limited our ability to detect a

correlation. That said, the high prevalence of neutral terms by itself is evidence that effect sizes

are not usually taken into account when reporting results, as differences tend to be described

in the text by their statistical significance only.

This point is especially important to consider in the light of recent calls for basic science to

use data synthesis tools such as meta-analysis [11] and formal or informal Bayesian inference

[2,8,10,51]. In both of these cases, the incremental effect of each new experiment on research-

ers’ beliefs on the veracity of a finding is dependent both on the effect size of the result and on

its statistical significance. However, even exact p values were uncommonly reported in our

sample, with the majority of articles describing p as being above or below a threshold value.

This seems to suggest that researchers in the field indeed tend to consider statistical signifi-

cance as a binary outcome, and might not be quite ready or willing to move towards Bayesian

logic, which would require a major paradigm shift in the way results are reported and

discussed.

An interesting question is that, if researches in the field indeed were to move away from

null-significance hypothesis testing, the concept of statistical power as it is defined today

would largely lose its meaning (as it is intrinsically linked to the idea of a significance thresh-

old). Nevertheless, the necessity of adequate sample size for statistical robustness would

remain–in this case, not in order to detect significant differences and prevent false-negatives

and false-positives, but to estimate effect sizes with adequate precision. The current notion of

statistical power to detect a given difference could thus be replaced with a desired confidence

interval for the obtained result when performing sample size calculations–a formulation that

might be useful in terms of differentiating biologically significant results from irrelevant ones.

Concerning article impact metrics, our results are in line with previous work showing that

journal impact factor does not correlate with statistical power [14] or with most risk of bias

indicators [13]. Furthermore, we showed that, in articles on fear conditioning, this lack of cor-

relation also occurs for the percentage of significant experiments and the mean effect size for

significant differences, and that it extends to citations measured over 2 subsequent years. That

said, our article-level analysis was limited by the fact that, for many articles, the included

experiments represented a minority of the findings. Moreover, most articles tend to cluster

around intermediate impact factors (i.e. between 3 and 6) and relatively low (< 20) citation

numbers. Thus, our methodology might not have been adequate to detect correlations between

these metrics with article-wide effect size and power estimates.

The choice to focus on a particular type of experiment–in this case, interventions directed

at rodent fear conditioning acquisition or consolidation–is both one of the main strengths and

the major limitation of our findings. On one hand, it allows us to look at effect sizes that are
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truly on the same scale, as fear conditioning protocols tend to be reasonably similar across lab-

oratories, and all included experiments described their results using the same metric. Thus, the

studied effect sizes are not abstract and have real-life meaning. On the other hand, this deci-

sion limits our conclusions to this specific field of science, and also weakens our article-level

conclusions, as most articles had only a fraction of their experiments analyzed.

Dealing with multiple experiments using different outcomes presents a major challenge for

meta-research in basic science, and all alternatives present limitations. A radically opposite

approach of converting all effect sizes in a field to a single metric (e.g. Pearson’s r, Cohen’s d,

etc.) has been used by other researchers investigating similar topics in neuroscience and psy-

chology [17,23,31,35]. Although normalizing effect sizes allows one to obtain results from a

wider field, it also leads them to be abstract and not as readily understandable by experimental

researchers. Moreover, this approach can lead to the aggregation of results from disparate

types of experiments for which effect sizes are not in the same scale, leading to important dis-

tortions in calculating power for individual experiments. Finally, recent evidence indicates

that, even within neuroscience, features such as statistical power have very different distribu-

tions across subfields [18], suggesting that surveys of individual areas are likely to be more reli-

able for studying them.

In our case, studying the concrete scenario of a specific methodology leads to more readily

applicable suggestions for experimental researchers, such as the rule-of-thumb recommenda-

tion that the average number of animals per group in a fear conditioning experiments to

achieve 80% power would be around 15 for typical effect sizes and variances. Our approach

also allowed us to detect correlations between results and specific methodological factors (e.g.

context vs. cued conditioning, female vs. male animals) that would not be apparent if multiple

types of experiments were pooled together. Still, to provide more solid conclusions on the

causal influence of these factors on experimental results, even our methodology has too wide a

focus, as analyzing multiple interventions limits our possibilities to perform meta-analysis and

meta-regression to control for confounding variables. Follow-up studies with more specific

aims (i.e. meta-analyses of specific interventions in fear conditioning) are thus warranted to

understand the variation between results in the field.

Finally, it is important to note that, while our study has led to some illuminating conclu-

sions, they are inherently limited to the methodology under study. Thus, extrapolating our

findings to other types of behavioral studies, not to mention other fields of science, requires

data to be collected for each specific subfield. While this might appear herculean at first glance,

it is easily achievable if scientists working within specific domains start to design and perform

their own systematic reviews. Only through this dissemination of meta-research across differ-

ent areas of science will we be able to develop solutions that, by respecting the particularities of

individual subfields, will be accepted enough to have an impact on research reproducibility.

Materials and methods

The full protocol of data selection, extraction and analysis was initially planned on the basis of

a pilot analysis of 30 papers, and was registered, reviewed and published ahead of full data

extraction [20]. In brief, we searched PubMed for the term “fear conditioning” AND (“learn-

ing” OR “consolidation” OR “acquisition”) AND (“mouse” OR “mice” OR “rat” OR “rats”)” to

obtain all articles published online in 2013. Titles and abstracts were first scanned for articles

presenting original results involving fear conditioning in rodents that were written in English.

Selected articles underwent full-text screening for selection of experiments that (a) described

the effects of a single intervention on fear conditioning acquisition or consolidation, (b) had a

clearly defined control group to which the experimental group is compared to, (c) used
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freezing behavior as a measure of conditioned fear in a test session and (d) had available data

on mean freezing, SD or SEM, as well as on the significance of the comparison. Articles were

screened by one of two investigators (C.F.D.C. or T.C.M.) for relevant data and were analyzed

by the other–thus, all included experiments were dual-reviewed.

Only experiments analyzing the effect of interventions performed before or up to 6 hours

after the training session (i.e. those affecting fear conditioning acquisition or its immediate

consolidation) were included. Data on mean freezing and SD or SEM were obtained for each

group from the text when available; otherwise, it was extracted using Gsys 2.4.6 software (Hok-

kaido University Nuclear Reaction Data Centre). When exact sample size for each group was

available, the experiment was used for the analysis of effect size and statistical power–other-

wise, only effect size was obtained, and the experiment was excluded from power analysis. For

individual experiments, study design characteristics were also obtained, including species and

sex of the animals, type of conditioning protocol, type, timing and site of intervention.

From each comparison, we also obtained the description term used by the authors in the

results session of the paper. Classification of the terms used to describe effects (S1 and S2

Tables) was based on a blinded assessment of words or phrases by a pool of 14 researchers who

were fluent or native speakers of English and had current or past experience in the field of

behavioral neuroscience. Categories were given a score from 0 to 2 in order of magnitude (i.e.

0 = weak, 1 = neutral, 2 = strong for significant results; 0 = similar, 1 = neutral, 2 = trend for

non-significant results), and the average results for all researchers was used as a continuous

variable for analysis.

Apart from experiment-level variables, we also extracted article-level data such as impact

factor of the journal in which it was published (based on the 2013 Journal Citations Report),

number of citations (obtained for all articles on August 26th 2016), country of origin (defined

by the corresponding author’s affiliation) and the 7 risk of bias indicators described on

Table 1. For article-level correlations, we compiled these measures into a normalized score.

After completion of data extraction, all calculations and analyses were performed according

to the previously specified protocol. Specific details of calculations (as well as the raw data

used) are presented as S1 Data. After this, the following additional analyses were performed in

an exploratory fashion:

(a) To confirm that residual freezing levels after memory-impairing interventions were

indeed above training values, demonstrating that most amnestic intervention have partial

effects, we extracted pre-conditioning freezing levels from training sessions when these

were available. These levels were obtained for pre-shock periods only, and separated as

baseline values for contextual (i.e. freezing in the absence of tone) or tone conditioning

(i.e. freezing in the presence of a tone, but before shock), as displayed in S5 Fig. These

were compared to the corresponding test session values for treated groups in memory-

impairing interventions by an unpaired t test based on the extracted means, SD or SEM

and sample size when these were available.

(b) In the original protocol, only the mean of all effective interventions (i.e. upper-bound

effect size) was planned as a point estimate to be used for power calculations, although

we acknowledged this to be optimistic [20]. We later decided to perform power calcula-

tions based on the mean effect size of the experiments achieving power above 0.95 on the

first analysis (i.e. intermediate effect size) to avoid effect size inflation, as we reached the

conclusion that this would provide a more realistic estimate. Additionally, we calculated

power based on the mean effect size of the whole sample of experiments as a lower-

bound estimate, and presented all three estimates in the results section and figures.
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(c) In order to evaluate whether the distribution of effect sizes and statistical power varied if

effect sizes were defined as absolute differences in freezing levels instead of relative ones,

we repeated the analyses in Figs 2–4 using absolute differences in S1, S6 and S9 Figs. This

proved to be particularly important to demonstrate that correlations between effect sizes

and power were not the consequence of a confounding association of both variables with

coefficients of variation. We also repeated power and correlation analyses using effect

sizes as standardized mean differences (e.g. Cohen’s d) in S7 and S10 Figs)

(d) To further evaluate the possible impact of the negative correlation between coefficients of

variation and freezing levels on our results, we decided to use freezing levels as a covari-

ate in the correlations shown in Fig 4. We also checked whether adding freezing levels as

a covariate influenced the statistical analyses in Figs 5 and 6 and S11 Fig, but as this did

not have a significant impact on the results in these figures, we only reported the origi-

nally planned analyses.

(e) All of our planned analyses were parametric; after extraction, however, it was clear that

some of the data deviated from a normal distribution (especially in the case of power esti-

mates, citation counts and impact factor). Because of this, we performed additional non-

parametric analyses for the correlations of citations and impact factor with percentage of

significant results, mean normalized effect size, statistical power and study quality score.

(f) In the protocol, we had planned to test correlations between normalized effect sizes and

statistical power, mean sample size and absolute freezing levels (using the group with the

highest freezing). After analyzing the results, we also decided to correlate normalized

effect sizes with coefficients of variation (as this, rather than sample size, seemed to

explain the lower power of non-significant results), additional power estimates (as using

our original estimate led to a ceiling effect) and different estimates of freezing based on

the control group or on the mean freezing of both groups (to compare these forms of

normalization with the one we chose).

(g) Due to the correlation of study quality assessment with journal impact factor, we per-

formed an exploratory analysis of the correlation of this metric with each of the individ-

ual quality assessment items by performing a Student’s t test (corrected for unequal

variances by Welch’s correction) between the impact factors of studies with and without

each item.

(h) Because of the additional analyses above, we adjusted the number of comparisons/corre-

lations used as the basis of the Holm-Sidak correction for multiple comparisons. The

total numbers used for each correction were 14 for experiment-level comparisons, 17 for

article-level comparisons, 28 for experiment-level correlations and 8 for article-level cor-

relations, leading to significance thresholds between 0.003 and 0.05.

Supporting information

S1 Data. Complete dataset in Microsoft access format and database info. All extracted and

calculated data are present in the .accdb file. Each spreadsheet is connected to the level above it

by an automatic field code. The complete description of each variable is presented in the data-

base info PDF file.

(ZIP)

S1 Fig. Distribution of effect sizes calculated as absolute differences in freezing. (A) Distri-

bution of effect sizes for experiments, expressed as the absolute difference in freezing between
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groups. Interventions were divided into memory-impairing (-24.4 ± 10.6, n = 146), memory-

enhancing (21.6 ± 8.6, n = 53) or non-effective (-1.09 ± 7.7, n = 211) for graphical purposes,

according to the statistical significance of the comparison as informed by authors. Addition-

ally, the whole sample is shown in grey (-6.5 ± 17.7 [-8.2 to -4.7], n = 410). Values are expressed

as mean ± SD [95% confidence interval]. Line and whiskers in the inset express median and

interquartile interval. (B) Distributions of normalized effect sizes for articles, calculated as the

absolute differences between groups. Interventions were divided into memory-impairing

(24.4 ± 10.6, n = 146), memory-enhancing (21.6 ± 8.6, n = 53) or non-effective (5.8 ± 5.2,

n = 211). Additionally, the whole sample of experiments is shown in grey (14.5 ± 12.0 [13.3 to

15.6], n = 410).

(TIF)

S2 Fig. Correlations of effect sizes and coefficients of variation with freezing levels. (A)

Correlation between the highest mean freezing between both groups and relative effect size,

normalized as the % of freezing levels in the highest group. r = -0.20, p<0.0001� (n = 410). (B)

Correlation between mean freezing in the control group and normalized effect size. r = -0.25,

p<0.0001�. (C) Correlation between mean freezing between groups and normalized effect

size. r = -0.45, p<0.0001�. (D) Correlation between the highest mean freezing between both

groups and effect size expressed as absolute difference in freezing between groups. r = 0.28,

p<0.0001�. (E) Correlation between mean freezing in the control group and absolute effect

size. r = 0.18, p = 0.0003�. (F) Correlation between mean freezing between groups and absolute

effect size. r = -0.01, p = 0.81. (G) Correlation between highest mean freezing and coefficient

of variation (sample size-weighted pooled standard deviation/pooled mean) of both groups. r

= -0.69, p<0.0001� (n = 336, as only experiments with exact sample sizes were used to calculate

coefficients of variation). (H) Correlation between mean freezing in the control group and

coefficient of variation. r = -0.65, p<0.0001�. (I) Correlation between mean freezing between

groups and coefficient of variation. r = -0.72, p<0.0001�. Asterisks indicate significant results

according to Holm-Sidak correction for 28 experiment-level correlations.

(TIF)

S3 Fig. Effect size distribution in Cohen’s d. Distribution of effect sizes, expressed as stan-

dardized mean differences calculated on the basis of pooled standard deviations (i.e. Cohen’s

d). Interventions were divided into memory-impairing (1.5 ± 0.7, n = 120), memory-enhanc-

ing (1.4 ± 0.5, n = 39) or non-effective (0.4 ± 0.3, n = 177) for graphical purposes, according to

the statistical significance of the comparison as informed by authors. Additionally, the whole

sample of experiments is shown in grey (0.9 ± 0.7 [0.8 to 1.0], n = 336). Values are expressed as

mean ± SD [95% confidence interval]. Line and whiskers in the inset express median and

interquartile interval.

(TIF)

S4 Fig. Distribution of mean effect sizes at the article level. (A) Distribution of mean effect

sizes for articles, calculated as percentage of control group freezing. The mean effect size for

each type of experiment for each article is shown in the figure–thus, each article can contribute

to more than one category if it contains more than one type of experiment (although they are

only counted once in the “all” columns). Interventions were divided into memory-impairing

(-44.5 ± 18.6%, n = 71), memory-enhancing (75.9 ± 55%, n = 27) or non-effective (1.2 ± 21.8,

n = 82). Additionally, the whole sample of articles is shown in grey (-6.1 ± 48% [-14.8 to 2.5],

n = 122). Line and whiskers in the inset express median and interquartile interval. (B) Distri-

butions of mean normalized effect sizes for articles, calculated as the percentage of the group

with the highest mean. Interventions were divided into memory-impairing (46.2 ± 16.7%,
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n = 71), memory-enhancing (41.2 ± 12.2%, n = 27) or non-effective (13.6 ± 10.6, n = 82). Addi-

tionally, the whole sample of articles is shown in grey (31.5 ± 18.4% [28.2 to 34.8], n = 122).

Values are expressed as mean ± SD [95% confidence interval].

(TIF)

S5 Fig. Freezing levels during training and test sessions for memory-impairing interven-

tions in contextual and tone conditioning. (A) Mean freezing (%) in response to context

during training and testing for control (left) and treated (right) groups (n = 25 experiments

for which baseline freezing to context–i.e. freezing percentage before any footshocks were

applied–was reported for the training session). (B) Mean freezing (%) in response to the first

tone during training and in response to the average of all tones during testing, for control (left)

and treated (right) animals (n = 10 experiments for which baseline freezing to tone–i.e. freez-

ing percentage to the first tone before pairing with footshock–was reported for the training ses-

sion). Mean freezing is higher in the test than in the training session in all 35 experiments,

with p< 0.05 in 25 (78%) out of the 32 cases in which there was enough information (e.g.

exact sample size) to perform an unpaired t test between sessions.

(TIF)

S6 Fig. Distribution of statistical power calculated for absolute effect sizes. (A) Distribution

of statistical power for memory-impairing interventions: based on each experiment’s variance

and sample size, power varies according to the absolute difference to be detected for α = 0.05.

Dashed lines show the three effect sizes used for point estimates of power in D, E and F. (B)

Distribution of statistical power for memory-enhancing interventions. (C) Distribution of sta-

tistical power for non-effective interventions. (D) Distribution of statistical power to detect the

upper-bound absolute effect size of 23.0% (i.e. mean of statistically significant experiments;

right dashed line on A, B and C) for impairing (red), enhancing (blue), non-significant (yel-

low) and all (grey) experiments. Lines and whiskers express median and interquartile interval.

(E) Distribution of statistical power to detect the intermediate absolute effect size of 17.1% (i.e.

mean of significant experiments powered at 95% in the analysis described in D; middle dashed

line on A, B and C). (F) Distribution of statistical power to detect the lower-bound absolute

effect size of 14.5% (i.e. mean of all experiments; left dashed line on A, B and C).

(TIF)

S7 Fig. Distribution of statistical power calculated for effect sizes in Cohen’s d. (A) Distri-

bution of statistical power calculated for Cohen’s d = 0.8 (i.e. large effects). for memory-

impairing (red, 0.46 ± 0.15, n = 120), memory-enhancing (blue, 0.42 ± 0.10, n = 39), non-effec-

tive (yellow, 0.44 ± 0.12, n = 177) and all (grey, 0.44 ± 0.13, n = 336) experiments. (B) Distribu-

tion of statistical power calculated for Cohen’s d = 0.5. for memory-impairing (0.22 ± 0.07),

memory-enhancing, (0.20 ± 0.05) non-effective (0.21 ± 0.07) and all experiments, (0.21 ±
0.07). (C) Distribution of statistical power calculated for Cohen’s d = 0.2 for memory-impair-

ing (0.08 ± 0.01), memory-enhancing (0.07 ± 0.01), non-effective (0.07 ± 0.01) and all experi-

ments, (0.08 ± 0.01). Lines and whiskers represent median and interquartile interval.

(TIF)

S8 Fig. Distribution of statistical power at the article level. (A) Distribution of mean sample

size within articles. Gray bars show the distribution of mean sample size for the whole sample

of articles (10.8 ± 4.2 [10.1–11.4], n = 149), while lines show the distribution of the mean sam-

ple size of memory-impairing (red, 11 ± 4.2, n = 60), memory-enhancing (blue, 10.1 ± 3.1,

n = 19) and non-effective (yellow, 10.7 ± 4.4, n = 70) interventions within each article. Each

article can contribute to more than one category if it contains more than one type of experi-

ment, although they are counted only once in the full distribution. Values are expressed as
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mean ± SD [95% confidence interval]. (B) Frequency distribution of mean coefficients of vari-

ation for the whole sample of articles (0.44 ± 0.23 [0.41–0.48], n = 149) and for memory-

impairing (0.49 ± 0.23, n = 60), memory-enhancing (0.38 ± 0.14, n = 19) and non-effective

interventions (0.42 ± 0.23, n = 70) within each article. (C) Statistical power distribution across

articles. Based on each experiment’s variance and sample size, mean power varies according to

the difference to be detected for α = 0.05. C.i, C.ii and C.iii show the distribution of statistical

power curves for memory-impairing, memory enhancing and non-effective interventions

within articles, respectively. Vertical dotted lines mark the effect sizes estimates used for the

power calculations in D, E and F. (D) Statistical power calculated based on the upper-bound

effect size of 45.6% for the mean of memory-impairing, memory-enhancing and non-effective

interventions (using the mean power for each type of experiment in each article) or for all

experiments in each article. Line and whiskers express median and interquartile interval.

Mean statistical power is 0.77 ± 0.21 [0.73–0.81] (n = 105) for the whole sample, 0.79 ± 0.21

(n = 60) for memory-impairing, 0.89 ± 0.12 (n = 19) for memory-enhancing and 0.74 ± 0.23

(n = 70) for non-effective interventions. (E) Same as D, but using the intermediate effect size

of 37.2% for calculations. Mean statistical power is 0.67 ± 0.24 [0.63–0.72] (n = 105) for the

whole sample, 0.68 ± 0.24 (n = 60) for memory-impairing, 0.79 ± 0.15 (n = 19) for memory-

enhancing and 0.65 ± 0.26 (n = 70) for non-effective interventions. (F) Same as D and E, but

using the lower-bound effect size estimate of 29.5%. Mean statistical power is 0.55 ± 0.24

[0.50–0.60], n = 105 for the whole sample, 0.54 ± 0.24 (n = 60) for memory-impairing, 0.64 ±
0.18 (n = 19) for memory-enhancing and 0.54 ± 0.28 (n = 70) for non-effective interventions.

(TIF)

S9 Fig. Correlations between absolute effect size, variation and statistical power. (A) Corre-

lation between absolute effect size and mean sample size. No significant correlation is found

(r = -0.05, p = 0.34), although this is largely due to the presence of two outliers. (B) Correlation

between absolute effect size and coefficient of variation. Correlation of the whole sample of

experiments yields r = 0.02, p = 0.70 (n = 336). (C) Correlation between absolute effect size

and statistical power based on upper-bound effect size of 23.0%. Correlation of the whole sam-

ple of experiments yields r = -0.24, p<0.0001�. (D) Correlation between absolute effect size

and statistical power based on intermediate effect size of 17.1%; r = -0.27, p<0.0001�. (E) Cor-

relation between absolute effect size and statistical power based on lower-bound effect size of

14.5%; r = -0.28, p<0.0001�. Asterisks indicate significant results according to Holm-Sidak

correction for 28 experiment-level correlations.

(TIF)

S10 Fig. Correlations between effect sizes in Cohen’s d, variation and statistical power. (A)

Correlation between effect size expressed in Cohen’s d and mean sample size. Correlation of

the whole sample of experiments yields r = -0.15, p = 0.007, suggesting the presence of effect

size inflation and/or publication bias. Grey line indicates the effect size needed to achieve

p< 0.05 in a two-sample t test with equal numbers of animals in both groups for each sample

size. Although significant results are invariably above the line, non-significant results can be

observed on both sides due to the use of different statistical tests (e.g. post-hoc tests corrected

for multiple comparisons) or different sample sizes between groups (B) Correlation between

Cohen’s d and coefficient of variation. The negative correlation (r = -0.14, p = 0.01) is mathe-

matically expected, as higher coefficients of variation will lead effect sizes to be smaller when

expressed as Cohen’s d. (C) Correlation between Cohen’s d and statistical power to detect an

effect size of d = 0.8. Correlation of the whole sample of experiments yields r = -0.16, p =

0.0025�. (D) Correlation between Cohen’s d and statistical power based on effect size of

d = 0.5; r = -0.15, p = 0.0045. (E) Correlation between Cohen’s d and statistical power based on
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effect size of d = 0.2; r = -0.15, p = 0.0047. Asterisks indicate significant results according to

Holm-Sidak correction for 28 experiment-level correlations.

(TIF)

S11 Fig. Effect sizes and coefficients of variation across different types of intervention. Col-

ors indicate memory-enhancing (red), memory-impairing (blue) or non-effective (yellow)

experiments, all of which are pooled together in the analysis. Line and whiskers express

median and interquartile interval. (A) Distribution of effect sizes across surgical (n = 22), phar-

macological (n = 159), genetic (n = 188) and behavioral (n = 41) interventions. One-way

ANOVA, p = 0.12. (B) Coefficients of variation across surgical (n = 18), pharmacological (n =

128), genetic (n = 158) and behavioral (n = 32) interventions. One-way ANOVA, p = 0.08. (C)

Distribution of effect sizes across systemic (n = 194) and intracerebral (n = 216) interventions.

Student’s t test, p = 0.45. (D) Coefficients of variation across systemic (n = 157) and intracere-

bral (n = 179) interventions. Student’s t test, p = 0.15. (E) Distribution of effect sizes across

interventions applied pre- (n = 333) or post-training (n = 77). Student’s t test, p = 0.07. (F)

Coefficients of variation across interventions applied pre- (n = 272) or post-training (n = 64).

Student’s t test, p = 0.0015�. For all coefficient of variation analyses, 74 experiments were

excluded due to lack of information on sample size for individual groups. Asterisks indicate

significant results according to Holm-Sidak correction for 14 experiment-level comparisons.

(TIF)

S12 Fig. Correlation of quality assessment items with % of significant results, mean effect

size for significant results and power. (A) Percentage of significant results in articles with

(n = 18) and without (n = 59) randomization. Line and whiskers express median and inter-

quartile interval. Student’s t test, p = 0.13. (B) Mean normalized effect size of significant results

in articles with (n = 14) and without (n = 47) randomization. Student’s t test, p = 0.79. (C)

Mean statistical power (upper-bound estimate) in articles with (n = 16) and without (n = 49)

randomization. Student’s t test, p = 0.33. (D) Percentage of significant results in articles with

(n = 92) and without (n = 30) blinded/automated assessment of freezing. Student’s t test,

p = 0.65. (E) Mean normalized effect size of significant results in articles with (n = 73) and

without (n = 25) blinded/automated assessment. Student’s t test, p = 0.06. (F) Mean statistical

power in articles with (n = 81) and without (n = 24) blind/automated assessment. Student’s t

test, p = 0.17. (G) Percentage of significant results in articles with (n = 66) and without (n =

56) statement of conflict of interest. Student’s t test, p = 0.12. (H) Mean normalized effect size

of significant results in articles with (n = 52) and without (n = 46) statement of conflict of

interest. Student’s t test, p = 0.72. (I) Mean statistical power in articles with (n = 56) and with-

out (n = 49) statement of conflict of interest. Student’s t test, p = 0.78. (J) Percentage of signifi-

cant results per article with (n = 98) and without (n = 24) exact sample size description for fear

conditioning experiments. Student’s t test, p = 0.63. (K) Mean normalized effect size of signifi-

cant results for articles with (n = 76) and without (n = 22) sample size description. Student’s t

test, p = 0.33. Sample size varies for each of the three variables, as not all papers have significant

results or exact sample sizes allowing power calculations. On panels G-I, white circles indicate

papers with a conflict of interest stated, while black circles indicate papers that stated no con-

flict of interest. According to Holm-Sidak correction for 17 article-level comparisons, none of

the differences is significant.

(TIF)

S13 Fig. Correlation of region of origin with effect size, power and quality scores. The

region of origin of articles were defined according to the affiliation of the corresponding

author (or authors) of each article. Line and whiskers express median and interquartile
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interval. (A) Distribution of mean effect size for significant results across regions of origin.

One-way ANOVA p = 0.49. (B) Percentage of significant results per paper across regions of

origin. One-way ANOVA p = 0.34 (C) Distribution of mean statistical power (upper-bound

estimate) across regions of origin. One-way ANOVA p = 0.98. (D) Distribution of study qual-

ity scores across regions of origin. One-way ANOVA p = 0.11. According to Holm-Sidak cor-

rection for 17 article-level comparisons, none of the differences is significant.

(TIF)

S14 Fig. Correlation of impact factor with effect size, power and quality scores. Impact fac-

tors were obtained from the 2013 Journal Citation Report. (A) Correlation between mean nor-

malized effect size and impact factor. r = -0.05, p = 0.63 (n = 98). (B) Correlation between % of

significant results per article and impact factor. r = -0.08, p = 0.37 (n = 121). (C) Correlation

between mean statistical power (upper-bound estimate) and impact factor. r = 0.05, p = 0.62

(n = 104). (D) Correlation between study quality score and impact factor. r = 0.22, p = 0.01

(n = 121). According to Holm-Sidak correction for 8 article-level correlations, none of them

are significant.

(TIF)

S1 Table. Classification of terms describing significant results. Volunteers were asked to

judge each term on the left column as representing a strong, neutral or weak effect. Each term

was given a score (strong, 2; neutral, 1; weak, 0) by each respondent and the mean score for

each term (right column) was calculated based on an average of all 14 researchers. Single-mea-

sures intraclass correlation coefficient (reflecting agreement among researchers) was .234,

while average-measures intraclass correlation coefficient (reflecting the aggregated reliability

of the obtained means) was .839. Terms are ordered by score from weakest to strongest.

(DOCX)

S2 Table. Classification of terms describing non-significant results. Volunteers were asked to

judge each term on the left column as representing similar means between both groups, a trend of

difference or no information on the presence of a trend (neutral). Each term was given a score

(trend, 2; neutral, 1; similar, 0) by each respondent and the mean score for each term (right col-

umn) was calculated based on an average of all 14 researchers. Single-measures intraclass correla-

tion coefficient (reflecting agreement among researchers) was .597, while average-measures

intraclass correlation coefficient (reflecting the aggregated reliability of the obtained means) was

.962. Terms are ordered by score from most similar to most associated with a trend.

(DOCX)
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