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A B S T R A C T

Behavioral neuroscience research incorporates the identical high level of meticulous methodologies and exacting
attention to detail as all other scientific disciplines. To achieve maximal rigor and reproducibility of findings,
well-trained investigators employ a variety of established best practices. Here we explicate some of the re-
quirements for rigorous experimental design and accurate data analysis in conducting mouse and rat behavioral
tests. Novel object recognition is used as an example of a cognitive assay which has been conducted successfully
with a range of methods, all based on common principles of appropriate procedures, controls, and statistics.
Directors of Rodent Core facilities within Intellectual and Developmental Disabilities Research Centers con-
tribute key aspects of their own novel object recognition protocols, offering insights into essential similarities
and less-critical differences. Literature cited in this review article will lead the interested reader to source papers
that provide step-by-step protocols which illustrate optimized methods for many standard rodent behavioral
assays. Adhering to best practices in behavioral neuroscience will enhance the value of animal models for the
multiple goals of understanding biological mechanisms, evaluating consequences of genetic mutations, and
discovering efficacious therapeutics.

1. Introduction

Scientists seek the truth. Neuroscientists design our experiments to
maximize the chances of discovering fundamental biological principles.
Decades of trial and error have yielded ever-improving strategies for
effective experimental designs. Unbiased data collection, the correct
control groups, sufficient sample sizes, randomized sampling, metho-
dological rigor using gold-standard techniques, maintaining blinded
data collection, stringent statistical analyses, and the importance of
replicating each finding, are issues taught to graduate students and
recommended by journal editors. Grant proposals to the National
Institutes of Health in the United States are now required to explicate
research strategies that promote unbiased rigor, transparency and

reproducibility for generating replicable findings. Rigorous approaches
to ensure sufficient statistical power are a priority recently described in
the National Institute of Mental Health Request for Information Notice
NOT-MH-17-036, (https://grants.nih.gov/grants/guide/notice-files/
NOT-MH-17–036.html). Yet many published discoveries are subse-
quently not reproduced (Collaboration, 2015; Gilmore, Diaz, Wyble, &
Yarkoni, 2017; Jarvis & Williams, 2016; Landis & et al., 2012). What
are the reasons for the apparent failures of the scientific enterprise to
ensure robustness and reproducibility of every discovery?

Principles of high relevance to rodent behavioral research include
(a) well-validated assay methods, (b) sufficient sample sizes of ran-
domly selected subject animals, (c) consideration of sex differences as
detected by male-female comparisons, (d) consideration of age factors,
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especially for rodent models of neurodevelopmental disorders, along
with using age-matched controls; (e) consideration of background
strain phenotypes to optimize the choice of parental inbred strain for
breeding a new mutant line of mice, and (f) using wildtype littermates
as the most appropriate controls for genotype comparisons. Full re-
porting of the test environment and testing apparatus is key to accu-
rately interpreting results. Employing well-established assays from the
extensive behavioral neuroscience literature enables meaningful re-
plication studies across laboratories. Conducting a battery of behavioral
assays in a defined sequence that proceeds from the least stressful to the
most stressful will further enhance replicability across labs. Beginning
with measures of general health can help rule out physical disabilities
that impair procedural requirements. Health confounds could introduce
artifacts and invalidate the interpretation of results from complex be-
havioral tests, e.g. a mouse that cannot walk will score poorly on be-
havioral tests that require locomotion. Conducting two or more assays
within the same behavioral domain, e.g. two corroborative social tests
or three corroborative learning and memory tasks, may increase the
reliability of findings. Approaches to maximally confirm a positive
finding include (a) repeating studies with a second independent cohort
of mice or rats in the researcher’s lab; (b) employing another closely
related but non-identical experimental manipulation such as another
drug from the same pharmacological class; (c) replicating findings in
other labs (Crawley, 2008; Crawley & Paylor, 1997).

In this review, we focus on replicability issues in analyzing rodent
behaviors. Behavioral assays have a reputation for high variability, as
discussed below. Ideally, highly standardized testing protocols will
become widely used. In practice, reaching consensus on methods has
proven difficult because of the varieties of available equipment, and
varying local conditions. Importantly, the innate behavioral repertoire
of mice and rats is influenced by a broad range of environmental fac-
tors, including aspects of parenting received from birth through
weaning, dominance hierarchies in the home cage, amount of human
handling prior to testing, previous testing experiences, olfactory cues
from the investigators, and physical properties of the vivarium and
laboratory such as lighting, temperature and noises (Crabbe, Wahlsten,
& Dudek, 1999; Sorge & et al., 2014; Voelkl & Wurbel, 2016; Wahlsten
et al., 2003). Many small but essential details affect the success of each
rodent behavioral assay. It is most helpful to learn these essential tips
from an expert behavioral neuroscience laboratory, to avoid making
common novice mistakes. In fact, innate biological variability is simi-
larly a property of rodent anatomy, physiology, biochemistry, and ge-
netics. Analogous considerations apply to other fields of neuroscience,
including imaging, electrophysiology, neurochemistry, optogenetics,
inducible pluripotent stem cell phenotypes, and gene expression studies
(Gilmore et al., 2017; Marton & Sohal, 2016; Peixoto et al., 2015;
Wang, Smith, Murphy, & Cook, 2010; Young-Pearse & Morrow, 2016).
Many of the principles presented in this article are applicable across
neuroscience research disciplines.

2. Relevance to the goals of the special issue on behavioral
analyses of animal models of intellectual and developmental
disabilities

In this Special Issue, Directors of Rodent Behavior Cores at NICHD-
supported Intellectual and Developmental Disorders Research Centers
(IDDRCs) and other behavioral core facilities offer their expertise for
conducting rigorous mouse and rat behavioral assays. Behavioral neu-
roscientists routinely use a variety of standardized rodent behavioral
assays, as described in many reviews (Bussey et al., 2012; Crabbe,
Phillips, & Belknap, 2010; Crawley, 2007; Cryan & Holmes, 2005;
Kazdoba, Leach, & Crawley, 2016a; Kazdoba et al., 2016b; Moser, 2011;
Puzzo, Lee, Palmeri, Calabrese, & Arancio, 2014; Wohr & Scattoni,
2013). Rodent behavioral assays fall into four general categories of
standardized scoring methods. (1) Fully automated mouse and rat be-
havioral assays such as open field, acoustic startle, prepulse inhibition,

contextual and cued fear conditioning, and operant learning. (2) Semi-
automated video tracking assays such as Morris water maze, novel
object recognition, and 3-chambered social approach, which are de-
pendent on sensitive parameters, settings, and appropriate statistical
interpretations. (3) Observer scored assays such as non-automated
elevated plus-maze, forced swim, spontaneous alternation, in-
tradimensional/extradimensional set-shift using olfactory substrates,
reciprocal social interactions, and repetitive self-grooming, are poten-
tially subject to unconscious rater bias and require evidence of high
inter-rater reliability. (4) Automated assays in which the data sets are
very large and complex, such as Intellicage (Krackow & et al., 2010;
Robinson & Riedel, 2014) and interesting new machine learning ap-
proaches (Hong et al., 2015; Lorbach et al., 2017; Wiltschko et al.,
2015), involve massive data acquisition approaches that may introduce
ambiguities which limit the interpretations of results. In the present
opinion article, we offer suggestions of strategies toward standardizing
rodent behavioral assays and ensuring reproducibility. Examples pre-
sented focus on novel object recognition, one of the most methodolo-
gically variable of the cognitive assays that are commonly used by
behavioral neuroscientists to investigate the neurobiology of learning
and memory.

2.1. Strategies to ensure reproducibility

The importance of identifying and rigorously assessing functional
behavioral outcomes is often underestimated. In many cases, functional
and behavioral outcomes are still the primary, and sometime the only,
means of diagnosis of intellectual disabilities in humans, as there are
many syndromes without unequivocal genetic causes, biomarkers, or
pathophysiology. Furthermore, it is fundamentally the amelioration
and/or prevention of the negative behavioral sequalae of disease, in-
cluding such symptoms as pain, depression and cognitive or sensor-
imotor impairment, that is the true goal of any search for novel ther-
apeutics or underlying mechanisms. Thus, it is essential that functional
assays conducted in laboratory animals (as well as in humans) are valid,
reliable and reproducible.

In theory, the strategies to ensure reproducibility and reliability in
behavioral assays are no different than those necessary to ensure rigor
in other fields, and follow the guidelines for good laboratory practice.
These include thoroughly researching the field, meticulous record
keeping, identifying and minimizing extraneous sources of variability
and confounds, limiting experimental error, ensuring validity, having
sufficient sample size, optimizing the assay so that neither ceiling nor
floor effects limit the assay sensitivity, and having well-trained per-
sonnel perform the assay. However, logistically and practically, many
factors that have no effect on biochemical assays, for example, time of
day of testing or test order effects, can have profound effects on func-
tional and behavioral outcomes in laboratory animals. This is further
complicated by the fact that some behavioral domains may be more
susceptible to particular types of artifacts than others.

2.2. Example of one widely used cognitive task: novel object recognition

The novel object recognition assay was developed by Ennaceur and
colleagues in 1988 (Ennaceur, Cavoy, Costa, & Delacour, 1989;
Ennaceur & Delacour, 1988; Ennaceur & Meliani, 1992) in rats and
relies on the innate tendency of rodents to preferentially explore novel
objects. This is most commonly conducted with one exposure to 2
identical objects in an open field (sample trial, Trial 1, familiarization
or training trial) followed by a retention interval and subsequent testing
(Trial 2, testing trial, retention trial) in which one of the familiar objects
has now been replaced with a novel object. Cognitively intact animals
should explore the novel (new) object more than the familiar (old)
object. At first glance, the task is deceptively simple and can be im-
plemented without large financial investment in specialized equipment.
In practice, there are many variations in the coding parameters,
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methodological parameters and in calculating cognitive performance
(Antunes & Biala, 2012; Bertaina-Anglade, Enjuanes, Morillon, & Drieu
la Rochelle, 2006; Bevins & Besheer, 2006; Ennaceur, 2010; Leger et al.,
2013). These include whether the animals are habituated to the test
arena prior to the assay, how many habituation sessions are conducted
and for how long, the shape and nature of the arena, properties of the
object pairs, the duration of the familiarization (training, sample) and
novel object recognition (test) trials, and the duration of the retention
interval. Other critical variables include lighting conditions, handling of
the subjects, and nocturnal or diurnal testing.

Table 1 describes methodological parameters that have been used
by several IDDRC Rodent Cores in successfully conducting novel object
recognition testing of rodent models of human neurodevelopmental
disorders with intellectual disabilities. Fig. 1 illustrates object pairs that
have proven useful in novel object recognition assays across IDDRC
facilities.

Methods for measuring and analyzing performance are also diverse
(Antunes & Biala, 2012; Bevins & Besheer, 2006; Leger et al., 2013;
Vogel-Ciernia & Wood, 2014). Definitions of exploratory sniffing vary
according to scoring system. Automated videotracking systems usually
define a zone around the object, e.g. a 2 cm annulus. More sophisticated
videotracking systems which detect body shapes further require that

the triangular nose shape is pointing in the direction of the object.
When scoring manually, sniffing is generally defined as the nose
pointing toward the object and within a 1–2 cm distance from the ob-
ject. As shown in Fig. 2, several outcome measures are in use (Antunes
& Biala, 2012; Bevins & Besheer, 2006; Leger et al., 2013; Vogel-Ciernia
& Wood, 2014) and include (1) Time spent exploring each object. The
absolute time spent exploring the novel object and the familiar object,
in seconds, during the recognition test phase provides the most trans-
parent presentation of the raw data. (2) Preference score. The pre-
ference score for the recognition test is calculated as (novel object ex-
ploration time/(novel object+ familiar object exploration
time)× 100%. (3) Difference score. The difference score is calculated
as time spent exploring the novel object – time spent exploring the
familiar object during the recognition test. (4) Discrimination index.
The discrimination index is calculated as time spent exploring the novel
object – time exploring the familiar)/(total time exploring both
novel+ familiar). Derived index scores, such as the preference score
and discrimination index, correct for individual differences in total
exploration. This score also provides an objective value for “failure” as
a 50% preference score reflects equal exploration of both novel and
familiar objects. However, the effect size can be small, as the average
preference score of healthy subjects is typically 60–70% and the mean

Fig. 1. Examples of object pairs used in novel object recognition testing by IDDRC Rodent Behavior Cores. (A) Left: Orange traffic cone, 7 cm high× 5 cm wide (Amazon.com), and green
cylindrical magnet, 7 cm high× 3 cm wide (source: Magneatos, GuideCraft, Amazon.com); photo by Michael Pride, UC Davis MIND Institute Rodent Behavior Core). (B) Premium Big
Briks, 3 staggered reclining bricks, ∼6 cm high× 3 cm wide (source: Amazon.com # B01N5FGUHB), coral, 5 cm high× 3 cm wide (Safari Ltd, Miami Lake, FL) and treasure chest 2 cm
high× 4 cm wide (Safari Ltd, Miami Lake, FL); photo by Melanie Schaffler, UC Davis MIND Institute. Unpublished photos in A and B were contributed by Jacqueline Crawley, UC Davis
MIND Institute IDDRC Rodent Behavior Core. (C) Binder clip (source: Office Depot, Washington DC, USA), Open field chamber (source: Accuscan, Columbus, OH, USA); decorated binder
clip. Unpublished photos contributed by Li Wang, Children's National Health System (CNHS) Center for Neuroscience IDDRC Neurobehavioral Core. (D) R2D2 toy, plastic Easter egg, gold
oval, metal toy car (source: Target), and Lego block (source unknown). Unpublished photos contributed by Heather Mitchell, University of Wisconsin-Madison, Waisman Center, IDD
Models Core. (E) Upper left: Plastic shapes (source: Toys“R”Us); photo by Brett Mommer and Zhengui Xia. Upper right: Gloss-painted wooden blocks (source unknown); photo by
Christine Cheah and William Catterall. Lower left: small sand-filled and water-filled glass jars (source unknown), photo by Brett Mommer and Zhengui Xia. Lower right: Plastic train
whistles and mini color 3x3 cube puzzles (source: Amazon.com), photos provided by Melissa Barker-Haliski and H. Steve White. Assembled photos contributed by Toby Cole, University of
Washington IDDRC Mouse Behavior Laboratory. (F) Left: child’s sippy cup, right, baby bottle; middle- ruler for scale. Unpublished photos contributed by Maria Gulinello, Albert Einstein
College of Medicine IDDRC Animal Phenotyping Core. (G) Plastic pipe fittings (source: Ace hardware, Porter Square, Cambridge, MA) 7 cm×2 cm, and glass jar 10 cm×3.5 cm.
Unpublished photo contributed by Nick Andrews, Boston Children’s Hospital IDDRC Neurodevelopmental Behavior Core. (H) LEGO Classic Medium Creative Brick Box and LEGO Duplo
Deluxe Box (source: Amazon.com #10,696 and #10,580). Orange, black and yellow tower dimensions: 15 cm tall× 6.5 cm wide× 6.5 cm long. White, red, blue, yellow tower di-
mensions: 15.5 cm×10 cm at the base, 7.5 cm wide along the rest of the body. Brown, yellow, green, orange tower dimensions: 16.5 cm tall × 6.5 cm wide× 9.5 cm long. Unpublished
photo contributed by Surabi Veeraragavan, Baylor College of Medicine IDDRC Neurobehavioral Core. (I) Bottle, 4.5 cm diam×16.5 cm tall, clear, filled with white sand and capped
(source: Michaels.com). Metal bar, 3.75 cm×3.75 cm×15 cm tall, thin aluminum sheet cut and fabricated with glue, filled with white sand (source: in-house fabrications shop). Objects
are mounted on a 6.5 cm×6.5 cm base. Unpublished photos contributed by Tim O’Brien, University of Pennsylvania, Children’s Hospital of Philadelphia IDDRC Neurobehavior Testing
Core.
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score if all animals fail will be about 50%. These derived indices can
result in different outcomes and often different variability than absolute
measures of exploration (Akkerman, Prickaerts, Steinbusch, & Blokland,
2012b; Akkerman et al., 2012a). (4) Pass/fail rate. Because there is
currently no convincing evidence that the absolute magnitude of the
preference for the novel object is related to the inherent strength of the
memory or extent of cognitive dysfunction, an additional possibility is
to treat the data as categorical or binary and illustrate and analyze the
percent of subjects passing and failing. “Pass” is calculated as the per-
centage of subjects exploring the novel object more than the familiar
object.

Fig. 2 is an exemplar for illustrative purposes, to demonstrate these
several ways of presenting the data, to highlight some critical issues and
familiarize the reader with the various advantages and problems asso-
ciated with each way of presenting and analyzing the data. These data
also graphically express a potential source of variability, specifically
variability that could be due to litter effects. Discussion of the various
methods of analyses is detailed in the statistics section below.

No one single way of illustrating and analyzing the data is superior
or intrinsically correct – some methods more accurately illustrate im-
portant patterns of the data. Data should be presented in the way that
most honestly reflects the true outcome of the experiment and any as-
pect of the data that would affect interpretation, including showing
individual data points in addition to means and error bars. Thus, in
Fig. 2D the standard bar chart with error would indicate that only one
drug-treated litter tends to perform worse than the control litters,
however Fig. 2F, more dramatically illustrates that both litters C and D
potentially have lower exploration of the novel object compared to the
familiar object. The pass/fail mosaic plot (Fig. 2E) indicates also that a
greater proportion of litter D does not have a preference for the novel
object than litter C but that both drug treated litters tend to perform
worse than control litters. This figure also illustrates the critical need to

have sufficient sample size, as in these data there is neither the statis-
tical power to warrant combining litters nor to detect litter effects
should they be present.

It is also essential to first establish that the control group exhibits
significant novel object recognition, to confirm that the methods are
working correctly and that the task parameters are feasible for the
specific age, species, and strain (Akkerman et al., 2012a, 2012b). Fur-
thermore, the absolute levels of exploration during the habituation and
familiarization phases (Fig. 2A), preceding the novel object recognition
phase of the assay (Fig. 2B), are reported as an internal control measure
of general exploration, to avoid artifacts and misinterpretations due to
motor dysfunction or abnormalities in spontaneous exploration of the
environment and objects.

3. Successful novel object recognition methods – What works,
what doesn’t, and what factors influence the reproducibility of
your cognitive tests

So, did the experiment in Fig. 2 “work”? Did the controls display
novel object recognition? Did any patterns appear during the famil-
iarization phase that would indicate exploratory confounds? Was there
an effect of the drug? And more importantly, if there was an effect, how
likely would it be that the investigator could precisely replicate the
drug effects and that others could also replicate these data? The answer
in this case is equivocal, as it appears plausible that one litter is more
affected by the drug than the other. Sample size in this exemplar is
insufficient to make a statistical conclusion one way or another. This
example highlights the many ways that an apparently simple task could
be difficult to replicate, and some of the reasons why it is so often
difficult to replicate published work.

It is clear that there is a range of variables that can affect behavioral
and physiological assays in rodents, thus we focus next on the critical

Fig. 2. Common methods for analyzing and il-
lustrating novel object recognition data. (A) Total
object exploration of both objects (in seconds)
during the familiarization phase (training, Trial 1,
sample phase) scored and illustrated separately
for each of four litters (X axis- designated A, B, C
and D) (B) Total object exploration of both objects
(in seconds) during the novel object recognition
phase (Test, Trial 2). (C) The absolute exploration
of the new (novel) object (red, circle) and the old
(familiar) object (blue, triangle), in seconds,
during the novel object recognition test phase. (D)
Preference score = [(exploration novel object in
sec)/(exploration novel+ exploration fa-
miliar)]× 100 during the novel object recogni-
tion test phase. A 50% preference score= the
same exploration both the novel (new) and the
familiar (old) object). (E) Pass/Fail rate indicates
the % of subjects with and without a preference
for the novel object, with a preference designated
as>55% preference score during the novel ob-
ject recognition test phase. (F): Difference score
= (exploration of novel object in sec)-(explora-
tion of familiar object in sec) during the novel
object recognition test phase. A difference score of
0= the same exploration both the novel and the
familiar object. Data shown are from 4 individual
litters of C57BL/6 mice wherein dams were
treated during pregnancy with either normal
drinking water or a drug in the drinking water.
Offspring were tested at 5 mos. Litters A and B are
control treated (open bars) and litters C and D are
drug treated (green bars). Unpublished data by
Gulinello, Einstein, IDDRC core.
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parameters that can affect outcomes in behavioral assays with a focus
on the novel object recognition assay. A summary of some of the main
factors is listed below, and then discussed in more detail.

• Empirical Factors
– Training of staff and logistics of measurement
– Investigator factors
– Object validations
– Habituation, cleaning the arena and objects, olfaction
– Exclusion criteria
– Retention interval and test duration

• Animal Factors
– Housing conditions
– Sex
– Age
– Breeding strategy
– Circadian and seasonal
– Vendor source

• Experimental Design Factors
– Blinding
– Matching and circadian factors
– Sample sizes

3.1. Empirical factors

3.1.1. Accuracy of scoring and reliability of scoring
3.1.1.1. Training and inter-rater reliability. A “novice” experimenter
who is well-trained by an expert and has practiced on ≈10 subjects
may still have unreliable data compared to an experienced and
practiced investigator, resulting in differences in the apparent
percentage of subjects passing or failing (Fig. 3). In comparison,
trained experimenters have a high degree of concordance when
compared to another trained investigator (Fig. 3). This should not be
surprising to anyone who has tried to pipette perfect triplicates, insert a
good cannula or perform any bench work – there are many ways to
make mistakes. Training, expertise and independent validation of
scores should be required, as correct and accurate criteria for
conducting and scoring behavioral assessments are critical.

3.1.1.2. Manual vs automated scoring. Automated scoring with a
tracking system can be a reliable alternative, but still requires
extensive training in setting up the automated parameters. For
example, a small difference (2 cm) in the size of the zones used to

score exploration can result in very large differences in calculated
exploration of each novel object (Fig. 4) (Silvers, Harrod, Mactutus, &
Booze, 2007). Thus, automated scoring is not necessarily free from
experimenter error as it also requires substantial training to achieve
valid and reliable scores. It is not really possible to just “set it and forget
it.” Body size, activity levels and even anxiety levels affect the approach
patterns of the subjects and thus the appropriate zone size must be set
by a trained experimenter (Rutten et al., 2008) and must furthermore
be validated.

Although automated tests are appealing to many researchers and
funding agencies, automation is not necessarily more reliable nor more
valid, or less dependent on experience on the part of the researcher.
Most “automated” assays, including video tracking software, infrared
beam detection systems, acoustic startle systems, etc., require proper
calibration and understanding of complex software and hardware.
Issues include implementing the correct internal controls, substantial
datasets requiring extensive manipulation, large numbers of parameters
for which small variations drastically change the results, and a
knowledge of behavioral psychology principles, that when violated,
confound or invalidate the results.

Fig. 3. High degree of inter-experimenter reliability is dependent on sufficient training. (A). The % difference in total exploration in seconds was scored by a novice and a trained
experimenter (circles, open bars) when scoring identical movies of the same subjects vs the % difference between 2 trained experimenters also scoring identical movies (triangles, closed
bars. % difference = [ABS value (trained-novice)/trained %100] or [ABS value (trained1-trained2)/trained2 %100] (B) The Pass/Fail rate for a novice vs a trained experimenter (left
panel) and for 2 trained experimenters (right panel). N for each condition is shown in panel A as individual points in and within the bars in panel B. Note – the trained and novice in panel
A and viewed the same movies as did the trained experimenters. The two trained experimenter in panel B viewed identical movies for each comparison, but these experiments were
conducted separately, hence the different sample size. Unpublished data by Gulinello, Einstein, IDDRC core.

Fig. 4. The size of the zones (X Axis) in automated tracking software can affect apparent
object exploration scores. Very small differences of 2 cm in the size of the zone around the
object can result in significant differences in recorded exploration (F(2,71) = 5.4,
p < .01). N= 24. Results obtained by a trained human scorer are provided for com-
parison only. Unpublished data by Gulinello, Einstein, IDDRC core.
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Another variant is the parameter reported. Some experimenters
report the number of entries into the object zones. Others report the
duration of time exploring. Although a correlation between the number
of entries into the zones and the duration of exploration is expected,
there are large deviations from this pattern in sufficient numbers of
subjects to potentially invalidate the results if only one parameter is
reported.

3.1.1.3. Investigator factors. Many behavioral procedures rely on the
test subject responding to novelty in their environment. An often
overlooked variable in behavioral testing is the properties of the
investigator performing the procedure. To avoid distracting the
subject, consideration of the appearance and scent of the investigator
is noteworthy. Animal facilities often utilize personal protective
equipment as a means of bioprotection of rodent colonies and to limit
allergen exposure to investigators. Consistency in the use of scrubs or
gowns, gloves, face masks, bonnets, etc. imparts a day-to-day
“sameness” to the appearance of the investigator, which may
minimize the reaction of the rodent to the investigator. Likewise,
changes of perfumes, shampoos, soaps, etc. by an investigator across
the days of a procedure might affect behavioral scores in the rodents
being tested. Mice appear to respond differently to the sex of
investigator, particularly on procedures related to anxiety and pain
sensitivity (Sorge et al., 2014), which may be related to odors or
handling differences. However, this effect, which has not been
demonstrated in the novel object recognition test, lasts for a short
time (10–60min) and can be controlled for by sufficiently habituating
the subject to both the testing room and the experimenter (Hanstein
et al., 2010). Thus, implementing a standard acclimatization period
before testing the subjects is essential.

3.1.2. Object Validations, training period and retention interval
As indicated in Table 1, the most critical factors that affect the

outcome of the novel object recognition test, once reliable and valid
scoring are established and appropriate experimental design and
sample size have been achieved, are (1) validation of the object pairs
(no intrinsic preference of either object) and (2) duration of the re-
tention interval (Gulinello, Lebesgue, Jover-Mengual, Zukin, & Etgen,
2006; Ozawa, Yamada, & Ichitani, 2011). (3) Total duration of the test
can also be an issue.

3.1.2.1. Object validations. The premise of the novel object recognition
assay is that subjects with intact cognitive function will preferentially
explore the novel object. Thus, it is assumed that there is no intrinsic
preference for either of the objects. The issue is that a highly preferred
object will be explored more, regardless of whether it is familiar or
novel. Thus, before the test can be conducted reliably, the objects must
be validated. If the objects are equally attractive, then animals should
explore them both for about the same time during familiarization
(training Trial 1, sample trial). The pattern of performance (if subjects
pass or fail) will be independent of which object is novel and which is
familiar. Further, objects should be counterbalanced during an
experiment such that half of each group gets object A as the familiar
object and object B as the novel object, and the other half of each group
gets B as the familiar object and A as the novel object. Using
unvalidated pairs in which a clear preference exists will obscure
signficant differences that may otherwise exist (Zhang et al., 2012).
This step is also critical to ensure that the two objects are readily
distinguishable by the subjects. Behavioral neuroscience laboratories
traditionally conduct a series of trial and error validation tests to
identify object pairs with sufficient differences and equal valences. It is
interesting to note that 3D printing is used by the IDDRC Rodent Core at
Washington University at St. Louis to generate highly standardized
object pairs (David Wozniak, personal communication). Fig. 1
illustrates some object pairs that have been successfully used by
IDDRC Rodent Cores.

The exact stimuli (objects) are not a critical factor in the novel
object recognition assay (Busch, Herrmann, Muller, Lenz, & Gruber,
2006). Subjects can be re-tested with new object pairs, as long as all
pairs have been validated. High within-subject and between-cohort
concordance has been reported for repeated testing of the same subjects
with sequential object pairs (Dai et al., 2010; Silverman, Oliver, Karras,
Gastrell, & Crawley, 2013; Vijayanathan, Gulinello, Ali, & Cole, 2011;
Yang, Lewis, Sarvi, Foley, & Crawley, 2015).

3.1.2.2. Habituation. Various laboratories use different methods for
habituation and familiarization in the novel object recognition task.
Whether the subjects are habituated to the testing arena prior to the
familiarization phase (training, sample phase, Trial 1) and for how
long, seems to be idiosyncratic to each successful IDDRC Rodent Core
(Table 1). Specific experiments assessing the effect of habituation on
subsequent memory performance indicate that prior habituation does
not play a great role in affecting cognitive function, nor in general
levels of object exploration during the familiarization phase (Leger
et al., 2013). However, there may be practical benefits to habituation,
particularly in juvenile or highly active subjects. Specifically,
habituation may reduce unwanted behaviors such as climbing or
leaping that make interpretation and scoring of the assay difficult.

3.1.2.3. Cleaning and the influence of olfaction. Rodents and lagamorphs
have exceptional olfactory acuity and use this modality of sensory
information to a greater extent that do humans. Mice and rats also scent
mark, depositing urinary pheromones in the test arena. Thus, the
olfactory environment is potentially an issue in confounding the test.
It is worthy of note here that although many assume that mice and rats
rely on the visual modality to perform this assay, rodents do not have
good visual acuity and do not see color, as they have no fovea and
essentially lack cone cells. Olfactory, whisker and tactile modalities
provide at least an equal extent of information as does the visual
modality. Rodents can reliably perfom novel object preference tests in
the dark (Albasser et al., 2010).

Objects that once contained scented contents should generally be
avoided as this can alter the preference or avoidance of the object. This
information is empirically determined. Many scents, including citrus
and perfumes, which are appealing to humans, appear to be aversive to
rodents. If it is important to the hypothesis that you do not include
regions of the brain that process olfactory information, then it is also
critical to establish parameters that prevent the subjects from using
olfactory information. Standard practice is to clean the arena with 70%
ethanol between trials, and to thoroughly clean the arena and objects
after each day’s testing. Various dilutions of ethanol, from 10 to 70%,
isopropyl alcohol, and antimicrobial cleaning solutions such as vimoba,
have been used. It is possible that strongly scented cleaning solutions
could influence the novel object recognition results, particularly if in-
sufficient time is allowed for the liquid to evaporate, or the room air
ventilation is insufficient to clear odors quickly. However, there is in
fact little evidence that the subjects use olfactory cues in the novel
object recognition assay (Chan et al., 2017; Hoffman & Basurto, 2013).

3.1.2.4. Criteria for exclusion. For some mutant lines of mice and rats,
and in older rodents, exploratory locomotion and total exploration
scores may be consistently low. Care should be taken to ensure that
there has been adequate exploration of the objects during the
familiarization phase (Trial 1, training, sample phase). Preferences
based on less than 2–3 sec of data are not technically accurate. Low
scores cannot be quantified reproducibly with a stopwatch when
scoring manually, are more subject to anomalous entries into a zone
when scoring automatically, and do not reflect an adequate sampling of
the subject’s behavior. Furthermore, when general exploration is low,
there is insufficient exploration during habituation for the old objects to
become actually familiar, and is thus inadequate for an accurate
assessment of a preference for the novel object. There is also a
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tendency for those subjects with very low exploration to sit close to a
single object. Thus, the behavioral sampling may not reflect an active
preference for the proximal object. Data sets can be unreliable if they
include many data points with very low preference scores that are
generated as the result of inadequate exploration rather than true
cognitive deficits. Subjects with very low (< 3–5 sec) exploration “fail”
more consistently than subjects with higher exploration. In contrast, in
subjects with exploration greater than 3–5 sec during familiarization
(Trial 1, training or sample phase), the extent of exploration during the
familiarization phase is not correlated with subsequent performance in
the novel object recognition phase (Trial 2, test). A requirement for a
minimum duration of total object exploration during the familiarization
phase, and/or during the novel object recognition test phase, has not
been standardized across behavioral neuroscience labs or IDDRCs.

3.1.2.5. Retention interval. The sensitivity of the test, and therefore how
likely an effect will be significant and how likely that effect will be
reproducible, is also greatly dependent on the retention interval.
Generally, longer retention intervals, e.g. 24 h for long-term memory
testing, are more “difficult” than shorter retention intervals, e.g. 1 h for
short-term memory testing (Gulinello et al., 2006; Leger et al., 2013;
Ozawa et al., 2011; Sik, van Nieuwehuyzen, Prickaerts, & Blokland,
2003). The retention interval should be defined and optimized to
address the scientific hypothesis about the mutation or treatment.
Failing to optimize the retention interval can result in a loss of effect
through floor effects (too great a proportion of controls failing) or lack
of sensitivity from ceiling effects. Variations in retention intervals
between experimenters and different labs can result in an inability to
replicate studies through loss of sensitivity.

3.1.2.6. Test duration. The duration of the test is also a parameter
which varies between labs and can affect the outcome of the assay.
Eventually, the “new” object will also become familiar, and exploration
and novel object preference decline over time (Dix & Aggleton, 1999).
The optimum time for test duration is 3–5min in most cases, but can
depend on the level of exploration of the subjects, specifically older
subjects, subjects that are ill or stressed, etc. Thus, the test duration is
another parameter of this apparently simple assay that can greatly
affect the performance of the subjects, must be validated empirically,
and is often not reported in the methods section.

3.1.3. Animal factors
In addition to variations in the exact methods of conducting and

scoring the assay, several other animal factors can affect reliability and
reproducibility of the novel object recognition test. These include
housing and, vivarium conditions, handling, litter effects, and carryover
effects of prior tests or experimental manipulations.

3.1.3.1. Housing conditions. Housing rodents in isolation can have
profound effects on the subjects’ physiology, health and behavioral
sequelae (Chang, Hsiao, Chen, Yu, & Gean, 2015; Chida, Sudo, & Kubo,
2005; Douglas, Varlinskaya, & Spear, 2003; Huang, Liang, Ke, Chang, &
Hsieh-Li, 2011; Ibi & et al., 2008; Kwak, Lee, & Kaang, 2009; Lander,
Linder-Shacham, & Gaisler-Salomon, 2017; Makinodan & et al., 2016;
McLean et al., 2010; Pietropaolo, Singer, Feldon, & Yee, 2008; Pyter
et al., 2014; Sakakibara & et al., 2012; Siuda et al., 2014; Talani et al.,
2016; Varty, Powell, Lehmann-Masten, Buell, & Geyer, 2006) however
see (van Goethem et al., 2012). As shown in Fig. 5, female rats housed
in isolation have significantly worse preference scores in the novel
object recognition test assessed in a parametric test (F(1, 20)= 8.7;
p < .008) or in a Wilcoxon test (Z=−2.4 : p < .015). Chi square
(Fischer’s exact) analysis of the pass fail/ratio also indicates that a
higher proportion of isolated rats fail (p < .05). In addition to social
housing considerations, husbandry (such as food and water restriction)
and exposure to anesthetics, drugs, chronic injections or other stressors,
enrichment and surgical manipulations may also alter behavior and

apparent performance in the novel object recognition test (Beck &
Luine, 1999; Elizalde et al., 2008; Huang, Hayes, & Yang, 2017a;
Kawano et al., 2015; Orsini, Buchini, Conversi, & Cabib, 2004; Weiss &
Neuringer, 2012; Xiao, Liu, Chen, & Zhang, 2016).

3.1.3.2. Sex differences. Sex differences on novel object recognition
have not been routinely seen in control subjects (Fig. 6), however, see
(Bettis & Jacobs, 2012; Ghi, Orsetti, Gamalero, & Ferretti, 1999).
Females tend to have higher levels of exploration and some groups
have found sex differences when absolute level of exploration (in
seconds) is used as the measure of cognitive performance as (Bettis &
Jacobs, 2012; Ghi et al., 1999). Furthermore, sex differences have been
reported in baseline performance and treatment effects on some
behavioral assays and not on others. In 1993, the NIH Revitalization
Act required the inclusion of women in NIH-funded clinical research.
Sex as a biological variable must now be included in NIH grant
proposals. Preclinical studies have traditionally not kept up with this
policy, as the great majority studies with rodents either use males
exclusively, or do not report the sex, or provide no analysis of the
similarities and differences when both sexes are used (Zucker & Beery,
2010), despite urging by the NIH to include data from each sex (Clayton
& Collins, 2014).

Failure to address sex differences can result in a loss of both re-
producibility and translational power. Firstly, single sex studies, or
inadequately powered studies which cannot detect sex differences
should they occur, result in loss of translation power to half the human
population. Secondly, there is the potential for skewed data when both
sexes are not equally represented in all treatment groups. Despite the
lack of sex differences in the novel object recognition assay, sex dif-
ferences are evident in many other behavioral domains. Assessing the
number of slips in the balance beam, a measure of sensorimotor func-
tion and motor coordination, indicates significant differences between
males and females in 7month old C57 mice (Mean number of slips:
females= 11 ± 3.1, males= 24 ± 3.0; F(1, 19)= 9.09, p < .007;
unpublished data by Maria Gulinello, Einstein, IDDRC core). Sex dif-
ference were found to be significant in the visible platform trials in the
Morris water maze (Gulinello et al., 2009) though not in the spatial
memory trials (Fritz, Amrein, & Wolfer, 2017; Gulinello et al., 2009).
Baseline differences between sexes have been reported for other assays,
and mutations, treatment and housing conditions may differentially
affect either sex (Chitu et al., 2015; Gulinello, Orman, & Smith, 2003;
Hanstein et al., 2010; Huang, Zhou, & Liu, 2017b).

3.1.3.3. Age. Scores for novel object recognition seem to be stable in
mice tested between 3 and 4months of age. Older subjects
(> 12months) tend to explore less and do not tend to perform as
well as younger subjects at the same retention interval. When testing
older subjects, the duration of the familiarization trial, the duration of
the recognition test, and the retention interval must be optimized for
the age of the subjects. However, the pattern recognition, or spatial,
version of this assay is significantly affected even in 12month old
subjects (Benice, Rizk, Kohama, Pfankuch, & Raber, 2006; Cavoy &
Delacour, 1993; Haley, Berteau-Pavy, Berteau-Pavy, & Raber, 2012; Li
et al., 2015). Pre-weanling pups and mice younger than 2months may
also have poorer and more unreliable scores on novel object recognition
than adults (Anderson et al., 2004). Onset of puberty varies within and
between strains, ranging from about 25–43 days in female mice (Pinter,
Beda, Csaba, & Gerendai, 2007; Yuan et al., 2012). Concomitant
hormone fluctuations and developmental changes can contribute to
behavioral differences. Younger mice tend to have generally higher
activity levels in a novel environment, more rapidly approach novel
objects, and spend more time with a novel object relative to adults
(Anderson et al., 2004; Silvers et al., 2007).

3.1.3.4. Breeding strategy, circadian and seasonal effects, vendors. Many
additional animal factors require consideration. These include the
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number of generations of backcrossing or heterozygote breeding which
are conducted for a genetic mutation model, diurnal and circadian
effects, and seasonal effects of minor variations in room temperature
and humidity during the summer versus winter months. In addition,
different commercial vendors supply different substrains of C57BL
mice, and may breed mutant lines onto different genetic
backgrounds. As mentioned above, the background strain of mice
incorporates phenotypes that can directly affect the consequences of a
targeted gene mutation.

3.1.4. Experimental design factors
3.1.4.1. Blinding. Unconscious bias in scoring behavioral data is
unavoidable. The solution is to ensure that the investigator does not
know the genotype of the subject animal, and/or which subject
received which treatment. This is usually done by coding the animal
genotypes and/or videos with uninformative identification numbers,
and/or coding the drug vials with uninformative letters such as A, B, C.
Coding is done by another lab member. The rater remains uninformed
until after the scoring is completed and the code is broken. Blinding of
the experimenter scoring the test is a critical factor as the assessment of
behavioral criteria for exploring requires split-second judgments that
must be free from unconscious bias. However, in some cases this is
logistically difficult to achieve as subjects may have observable
phenotypic differences (body weight, fur condition etc.). It is thus
useful to have another experimenter independently conduct scoring to
confirm scores and observations when the condition of the subjects is
grossly visible.

3.1.4.2. Matching and circadian effects. Other important experimental
design factors include matching testing blocks. For example, it may take
about 8 h to test 20–25 subjects in a typical 2 trial novel object

recognition paradigm with a 1 h retention interval. This would mean
that some subjects are tested in the beginning of the day and some are
tested at the end of the day, introducing potentially confounding
circadian effects. Each block of tests should include equivalent
numbers of each treatment group, keeping in mind that a treatment
group is a single sex, genotype, and/or drug, using Ns that can be tested
in about 2 h. Circadian confounds due to time of day of testing or sleep
disruption can potentially affect performance in the novel object
recognition test (Muller, Fritzsche, & Weinert, 2015; Ruby et al.,
2013). Recognition memory may be less susceptible to circadian
influences than pattern recognition or object placement memory
(Takahashi, Sawa, & Okada, 2013).

3.1.4.3. Sample size. A critical factor in reproducibility and reliability is
sample size. Behavioral testing can be time consuming. It is tempting
for researchers to “test until significance” – i.e. to keep testing more
subjects until an effect is found. This incorrect strategy can yield a small
sample size, insufficient for a truly robust data set, or an unreasonably
large sample size. In some cases, it is impractical to complete the entire
behavioral assay with the sample size as originally designed. It is
preferable to combine smaller, manageable subsets to obtain sufficient
sample size to define a cohort. Data from the two or three subsets are
compared, e.g. scores in the control subgroups should be similar to each
other, and scores in the treatment subgroups should be similar to each
other, to confirm that the subsets can be combined to form the full
cohort with the required N (Gulinello et al., 2009; Hanstein et al., 2010;
Yang et al., 2015). In practice, this requires that all animals be
subjected to the same exact conditions, i.e. all previous tests in the
same order, identical objects, identical test parameters. Good
management of lab notes and databases are required, to keep track of
all the relevant factors that would prevent substantial intra-cohort
variability.

4. Importance of reporting all details in the methods section of
publications

Perfunctory methods sections with inadequate details and in-
sufficient citations are a recipe for irreproducible results. There are
clearly numerous factors, including specifics of the testing parameters,
scoring methods, housing conditions, and age of the subjects, that affect
the results obtained and how robust and reliable those results are.
Unfortunately, behavioral methods sections are often perfunctory,
especially in publications where the primary focus is not primarily
behavioral. Suggestions to improve transparency, robustness, and re-
producibility of behavioral publications are offered below.

(1) Cite relevant publications from the investigator’s lab and others. If
the experiment was conducted previously and similar data were

Fig. 5. The effect of isolation on performance in the
novel object recognition test (3 min familiarization,
3 min recognition, 30min retention interval). Female
Long-Evans rats were housed in either grouped (2–3 per
cage) or isolated conditions for 4–6weeks and then as-
sessed in the novel object recognition test. Sample sizes
are shown in the bars in the pass/fail graph at right.
Unpublished data by Gulinello, Einstein, IDDRC core.

Fig. 6. Absence of sex differences in the novel object recognition test. The graph depicts
the performance of male and female mice (total n= 551) on a C57BL/6 background,
tested between 3 and 10months old. Sex differences in performance were not detected at
any of the retention intervals. Unpublished data by Gulinello, Einstein, IDDRC core.
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obtained, cite the paper, to let other researchers know that the
findings have been replicated.

(2) Methods should be sufficiently detailed to address the major issues
affecting the outcomes of the test.

(3) Housing conditions and animal factors should be detailed (barrier
or conventional, group housed or isolated).

(4) Citations to a method should focus on papers containing detailed
methods and validation. It is best to avoid “ghost” citations that cite
a paper that cites a paper that cites a paper that eventually contains
the method.

(5) If you haven’t read the methods, you haven’t read the paper. If you
haven’t read the paper, please don’t cite the paper.

(6) The best advice for investigators and authors whose experience is
more molecular or physiological is to confer with behavioral ex-
perts before conducting behavioral assays and before publishing the
data.

(7) We encourage journal editors to recruit behavioral neuroscientists
with appropriate expertise as reviewers of manuscripts in which the
behavioral results impact the conclusions.

5. Appropriate statistical tests

Both underpowered studies, from a sample size that is too small, and
inappropriately applied statistical tests, can affect the interpretation of
the data and thus the likelihood that it will be reproducible.
Experiments in live subjects conducted with small sample sizes are
prone to artifacts, covariance and confounds that can neither be as-
sessed nor controlled for.

All statistical tests make certain assumptions about the data, that,
when violated, can affect the apparent significance. These include as-
sumptions about the distribution and variability and sample size.
Nonparametric tests are sometimes called distribution free statistics
because they do not require that the data fit a normal distribution. In
fact, these are not free of assumptions about the data, and parametric
tests offer many advantages. Within their assumptions, parametric tests
are robust and have greater power efficiency, e.g. relative to sample
size there is higher statistical power. Parametric tests are also more
flexible and can provide unique data, specifically about interactions
between factors and interactions of the factors over time. Parametric
tests are also arguably relatively resistant to violations of the assump-
tion of normality (due to the Central Limit Theorem) provided the
sample size is adequate – such as N=20–30 (Kwak & Kim, 2017).

Here we summarize some general guidelines and strategies for ob-
taining the highest quality and most rigorous behavioral data.

• The importance of core facilities and expert advice in conducting
these assays.

Very few researchers would embark on creating a new mutant
mouse or conducting HPLC analysis of samples without appropriate
training, literature searches, pilot studies, optimization, appropriate
validation studies, internal and external controls and consultation with
experts. In contrast, experimenters sometimes think that behavioral
assays do not require a high level of expertise. Core facilities and re-
search centers are designed to prevent “re-inventing the wheel”, with
all the attendant pitfalls that this entails. Core facilities are uniquely
able to validate existing methods and equipment and maintain data-
bases over long periods of time, which are conducive to analyses of
replications, and can examine meta-data in a manner usually in-
accessible to a single researcher or lab. Capabilities of core facilities
include assessment of internal controls such as locomotor activity
confounds which may impact total object exploration, and retention
intervals that set the level of challenge for cognitive tests. Behavioral
neuroscience experts routinely evaluate procedural control measures in
a new line of mice, since performance on the procedures of a cognitive
task can directly affect scores.

In contrast to analytical chemistry methods in which internal and
external standards are included within the assay, internal and external
standards for behavioral research generally rely on consistency of data
from control groups across time, using the maintained databases and
meta-data analyses. For the novel object recognition test, internal
controls may include (a) assessment of performance with no retention
interval, to distinguish non-specific sensorimotor deficits from cogni-
tive dysfunction (Gulinello et al., 2006; Li, Vijayanathan, Gulinello, &
Cole, 2010); (b) analysis of counterbalanced object data, to ensure that
no object bias exists, even after objects have been previously validated;
(c) analysis of exploration levels during the familiarization trial, (d)
inclusion of more than one retention interval (Gulinello et al., 2006),
and (e) assessment of general locomotor activity, rearing, grooming etc.
External controls include (a) evaluation of the consistency of data from
control groups across time, (b) between-cohort analyses, and (c) com-
parison to other assays in analogous behavioral domains (Gulinello
et al., 2009) . Does the subject have cognitive impairment, depression-
like behavior or tactile insensitivity? Or is that subject simply moving
less? One single test can seldom answer that question. Molecular biol-
ogists, physiologists and biochemists use internal controls and multiple
methods, which each have limitations. Behavioral investigators can and
should similarly differentiate between procedural performance and
cognitive abilities, and detect likely confounds.

• Honest illustration of the data set

Just as scientists have been admonished for less than honest
Western blots and immunohistochemistry images (Neill, 2006), so must
behavioral neuroscientists strive to illustrate and analyze their data
with scrupulous integrity. In the words of physicist Richard Feynman,
“We've learned from experience that the truth will come out. Other
experimenters will repeat your experiment and find out whether you
were wrong or right. Nature's phenomena will agree or they'll disagree
with your theory. And, although you may gain some temporary fame
and excitement, you will not gain a good reputation as a scientist if you
haven't tried to be very careful in this kind of work. And it's this type of
integrity, this kind of care not to fool yourself, that is missing to a large
extent” (Feynman & Leighton, 1985).

• Empirical data to test the critical parameters

To what extent should rodents be habituated to the arena/test en-
vironment? Should the test session have a duration of 5min or 20min?
Numerous examples of methodological variations appear in the litera-
ture, and should thus use appropriate caution about setting up a new
experiment based on one paper. These are empirical questions, with
empirical answers. While JOVE and various protocol journals can
provide a “quick start guide” that can be invaluable to setting up an
unfamiliar paradigm, there is no substitute for testing it, researching it
and validating it.

6. Conclusions

Ultimately the success of a rigorous experimental design will be
judged by the replicability of its findings. Especially when the rodent
behavioral phenotype is applied as a translational tool to evaluate po-
tential clinical treatments, well-replicated and highly robust pheno-
types are necessary to detect drug responses, over and above innate
biological variability (Begley & Ellis, 2012; Cole et al., 2013; Drucker,
2016; Schulz, Cookson, & Hausmann, 2016; Silverman et al., 2012).
One reasonable progression of replications to confirm the universal
strength of a finding is: (1) Replication within a lab, repeating the same
procedures in two independent cohorts of animals; (2) Evaluations of a
range of related behavioral assays, e.g. four learning and memory tasks,
or three sociability tests; (3) Replication across labs, each repeating
approximately the same experiments in mice or rats with the same
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mutation or treatment. In cases where results replicate well within one
laboratory but not universally, it is reasonable to assume that methods
specific to one lab will require modifications in other labs, to validate
the assay. It is useful for labs to look carefully at the experimental
parameters and conditions originally reported, and even to take the
time to contact the authors, to understand if there are any crucial dif-
ferences that may determine whether an effect is consistently detected;
(4) Comparisons across mutant lines, e.g. using mice with different
mutations in the same gene, or mutations in functionally related genes,
or a different drug in the same pharmacological class; (5) Comparisons
across species, e.g. mice, rats, and non-human primates. Findings that
replicate across these stringent criteria would provide high confidence
that the animal data are strong enough to inform consideration of a
clinical trial.

Issues surrounding the translational value of preclinical animal
models as predictive translational tools for clinical trials have been
extensively discussed (Belin, Belin-Rauscent, Everitt, & Dalley, 2016;
Flier, 2017; Geyer, 2008; Jablonski, Schreiber, Westbrook, Brennan, &
Stanton, 2013; Kas & et al., 2014; Kazdoba et al., 2016b; Lynch, Palmer,
& Gall, 2011; McGraw, Ward, & Samaco, 2017; Robbins, 2017; Sarter,
2006; Schulz et al., 2016; Snyder & et al., 2016; Spooren, Lindemann,
Ghosh, & Santarelli, 2012). Although non-predictive animal studies are
one factor, clinical trials fail for many other reasons. These include
toxicity and other human safety concerns, dose-response pharmacoki-
netic variability across human subjects, brain bioavailability of the
drug, inappropriate aspects of study design such as age of subjects at
treatment onset, characteristics selected for patient stratification such
as IQ and language abilities, and choice of primary outcome measures
(Insel & et al., 2013; Kola & Landis, 2004; Lythgoe et al., 2016).

In addition, rodents and humans may have innate differences in
critical pharmacodynamic, pharmacokinetic, metabolic, immune, and
lifespan parameters. Sanchez, Asin, & Artigas, 2015 provides a com-
prehensive example of pharmacokinetic and pharmacodynamic differ-
ences in drug action between rodents and humans. Vortioxetine, a
novel, multimodal antidepressant, displays a binding affinity profile to
specific serotonin receptors which differs considerably between rodents
and humans, as does its absolute oral availability and elimination half-
life (Sanchez et al., 2015).

“It is better (and cheaper) that potential targets be discarded at the
preclinical level should they prove ineffective.” (Perry & Lawrence,
2017). In terms of financial investment in drug development, con-
ducting rigorous animal studies may be cost-effective. The highest
quality of preclinical rodent data will maximize predictive validity.
Conversely, findings of no replicable preclinical efficacy may be suffi-
cient to disprove the hypothesized target mechanism, thereby saving
future expenditures. However, from the point of view of academic re-
searchers dependent on limited grant funding, well-designed replica-
tion studies are expensive, time consuming, and difficult to support
within current NIH grant budgets.

Of course, we recognize the conundrum. Research is a costly, time-
intensive endeavor. On the other hand, public and private support for
financing scientific research depends on confidence that results are
trustworthy. In principle, the scientific method is self-correcting.
Successful scientists maintain a high level of motivation for the long,
hard slog to generate important, pristine findings. Enthusiasm can wane
when consistently negative findings are obtained, which cannot be
published in good journals. Particularly discouraging is the common
scenario wherein careful researchers are scooped by competing labs
who publish less rigorous data. A major issue is the difficulty of pub-
lishing negative data, particularly failures to replicate, especially when
the initial paper is from a prominent laboratory and appears in a high-
profile journal (Button & Munafo, 2014; Macleod & et al., 2015).

It is heartening to see the reproducibility issue at the forefront of
debate in journals and at major funding agencies (Baker, 2017; Landis
et al., 2012; McNutt, 2014a, 2014b). Approaches to improve rigor,
transparency and reproducibility of data are now in place in many

venues (Collins & Tabak, 2014; Lithgow, Driscoll, & Phillips, 2017;
McNutt, 2014a, 2014b; Moher, Simera, Schulz, Hoey, & Altman, 2008).
Researchers can certainly be incentivized to invest their limited funding
in conducting rigorous experimental designs and replication studies.
Labs will be motivated to repeat positive findings in a second experi-
ment before considering publication, when their funding agency sup-
ports the replication study, and when editors of high profile journals
prioritize manuscripts that incorporate replication studies. Such stra-
tegies may ameliorate the “reproducibility crisis” to a great extent.
Promoting reproducibility goals could go a long way towards max-
imizing our discoveries of biological truths.
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