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To life scientists, one important feature offered by RNAseq, a next-generation sequencing

tool used to estimate changes in gene expression levels, lies in its unprecedented

resolution. It can score countable differences in transcript numbers among thousands

of genes and between experimental groups, all at once. However, its high cost limits

experimental designs to very small sample sizes, usually N = 3, which often results

in statistically underpowered analysis and poor reproducibility. All these issues are

compounded by the presence of experimental noise, which is harder to distinguish

from instrumental error when sample sizes are limiting (e.g., small-budget pilot

tests), experimental populations exhibit biologically heterogeneous or diffuse expression

phenotypes (e.g., patient samples), or when discriminating among transcriptional

signatures of closely related experimental conditions (e.g., toxicological modes of action,

or MOAs). Here, we present a leveraged signal-to-noise ratio (LSTNR) thresholding

method, founded on generalized linear modeling (GLM) of aligned read detection limits

to extract differentially expressed genes (DEGs) from noisy low-replication RNAseq data.

The LSTNRmethod uses an agnostic independent filtering strategy to define the dynamic

range of detected aggregate read counts per gene, and assigns statistical weights that

prioritize genes with better sequencing resolution in differential expression analyses. To

assess its performance, we implemented the LSTNR method to analyze three separate

datasets: first, using a systematically noisy in silico dataset, we demonstrated that LSTNR

can extract pre-designed patterns of expression and discriminate between “noise” and

“true” differentially expressed pseudogenes at a 100% success rate; then, we illustrated

how the LSTNR method can assign patient-derived breast cancer specimens correctly

to one out of their four reported molecular subtypes (luminal A, luminal B, Her2-enriched

and basal-like); and last, we showed the ability to retrieve five different modes of action

(MOA) elicited in livers of rats exposed to three toxicants under three nutritional routes by

using the LSTNR method. By combining differential measurements with resolving power
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to detect DEGs, the LSTNR method offers an alternative approach to interrogate noisy

and low-replication RNAseq datasets, which handles multiple biological conditions at

once, and defines benchmarks to validate RNAseq experiments with standard benchtop

assays.

Keywords: DEG, RNAseq, LSTNR, noise, expression patterns, biomarker discovery

INTRODUCTION

At their core, RNAseq and qPCR are two flavors of the same
principle: by quantifying how many copies of different molecular
templates are accumulated after a discrete number of duplication
rounds, it is possible to estimate their abundance in the original
sample as long as the amplification has occurred in exponential
fashion (Livak and Schmittgen, 2001; Pfaffl, 2001). Viewed
under this light, the realization that RNAseq data analysis
offers the same challenges qPCR faces is somewhat expectable;
nevertheless, discriminating good RNAseq data from bad is all
but impossible if following the traditional in-depth inspection of
qPCR data quality.

For starters, RNAseq can collect information from thousands
of genes in a massively parallel fashion within a single
experiment; given the scale of generated data, this means
inspection of differential expression levels from each individual
gene one at a time is impractical. Also, the discrete form of raw
RNAseq output, i.e., countable reads, is of a different nature and
statistical behavior than the output of other techniques, such as
qPCR and hybridization microarrays, in the form of a digitized
continuous-valued signal mass (Roy et al., 2011). Finally, in
RNAseq experiments the expected variation in total number
of representative reads for each detected transcript within a
sample depends, among other factors, on each transcript’s size,
abundance, and GC-composition. Efforts to control the effects
of such sequencing biases during library assembly have been
posited early on during the development of RNAseq technologies
(Auer and Doerge, 2010; Bullard et al., 2010); at the same time,
development of various programmatic strategies to adjust against
those biases during statistical analyses has continued ever since
(Hansen et al., 2010; Aird et al., 2011; Risso et al., 2011; Benjamini
and Speed, 2012; Wu et al., 2013; Law et al., 2014; Finotello and
Di Camillo, 2015).

In many pipelines for RNAseq analysis, read outputs are
transformed to a normalized measurement of relative expression
between two samples, such as fold-change differences. However,
performing read normalization can be problematic because it
“divides out” the net output of detected reads. Without that
information, it is impossible to determine whether observed
experimental variation is consistent with the detection capacity
of sequencing hardware or not. As a result, the ability to
discern between a real signal and instrumental noise is lost.
These issues are magnified in experiments with low replicate
numbers—a common limitation that RNAseq users face due
to costs of these technologies—or when specimens under
inspection show highly heterogeneous transcriptional profiles
within statistical groups (Hansen et al., 2011; Oberg et al.,

2012; Robles et al., 2012). To this day, financial constraints to
acquire and maintain RNAseq instrumentation, combined with
complex structure of output data, remain the primary obstacles
preventing RNAseq technologies to join clinical diagnostic
settings when characterizing transcriptional profiles of patient-
derived specimens (Nazarov et al., 2017).

Still, RNAseq remains the most powerful technique to assay
gene expression genome-wide. The accuracy in gene expression
measurements afforded by RNAseq relies on the volume and
diversity of aggregated cDNA fragments, each distinguished from
all others by their nucleotide sequences (Cloonan et al., 2008;
Mortazavi et al., 2008; Oshlack et al., 2010); conversely, errors
in RNAseq measurements are usually ascribed to nucleotide-
integration errors during PCR amplification (Finotello and
Di Camillo, 2015) because it is assumed that the exquisite
sensitivity of detection hardware in next-generation sequencers
guarantees accuracy. However, this assumption is not entirely
correct: digital detection systems will generate output data
from faithfully replicated sequences, trace contaminant templates
and misconstrued sequences all the same depending on
the quality of base-calling. This means that distinguishing
detection noise that stems from PCR bias, instrumental
error, contamination or any of them combined is not only
difficult, but perhaps irrelevant—all of them happen, and
all of them distort gene expression measurements the worst
when calculated from low read counts. In other words, while
base-calling in RNAseq depends on how precisely nucleotides
are detected, measuring expression differences is a resolution
problem.

Challenges to resolving expression differences by RNAseq
are complicated further when the number of experimental
samples is small and rates of detection for differentially expressed
genes (DEGs) is poor. In those scenarios, the traditional
route is to increase the sequencing depth for each sample
with additional rounds of sequencing. Adding sequencing
rounds surely increases the number of aligned reads per
gene (or coverage); however, no matter how low the rate of
misconstrued and contaminant reads that contribute to the
total read output may be, they will amount to higher numbers
of “phantom reads” undistinguishable from sequencing noise
as more sequencing rounds pile up (Tarazona et al., 2011; Li
and Tibshirani, 2013). This means that, without a threshold to
discriminate the rate of contaminant templates that randomly
align to a reference genome, the assumption that aligned
reads measure the different cDNA copies in a sample’s RNA
pool is as “true” as assuming that they represent sequencing
artifacts. Determining such a threshold of expectable detected
artifacts from RNAseq data calls for a statistical treatment of

Frontiers in Genetics | www.frontiersin.org 2 May 2018 | Volume 9 | Article 176

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Lozoya et al. LSTNR Method for DEG Analysis

raw sequencing output, one that deems collected reads as a
combination of faithful and artefactual sequences that align to a
reference genome.

Here, we present a leveraged signal-to-noise ratio (LSTNR)
thresholding method, founded on generalized linear modeling
(GLM) of aligned read detection limits to extract DEGs from
count-based and noisy low-replication RNAseq experiments.
The LSTNR method uses an agnostic independent filtering
strategy to define the dynamic range of detected aggregate read
counts per gene that can be explained by the variation in
sequencing coverage across genes and experimental replicates.
This approach not only determines a minimum read count
density that true expressed genes must accrue for reliable
detection, but also qualifies genes as more or less reliable
for differential expression measurements based on how distant
they are from the reliable detection minimum. By taking into
account that expression measurements based on read counts
have different levels of resolution for different genes, the LSTNR
method relies on one fundamental difference between the nature
of scale-dependent dispersion in sequencing output (uniquely
aligned reads) and the behavior of differential expression
estimates secondary to the original output (log-transformed
relative fold changes between genes or treatment groups): that
RNAseq-based estimates of gene expression differences between
groups are as robust as the sequencing depth that underlie
them.

MATERIALS AND METHODS

Implementation of LSTNR Method
A diagram of the LSTNR method pipeline is depicted
in Figure 1. Briefly, expression levels of individual genes
(Ensembl annotation) were calculated as the normalized rate
of deduplicated and uniquely aligned reads per million of
total sequenced reads (RPM) overlapping their annotated
genomic coordinates (reference genome: hg19). Statistical tests
of differential gene expression were performed using a weighed
two-way ANOVA model (gene × group blocks) of log2-
transformed fold changes (Log2FC) in RPM relative to gene-
wise mean RPM either from all samples (for phenotype
profiling experiments) or from a reference group (for treatment
vs. control experiments) with N ≥ 3 replicates per group.
Resolution weights of genes corresponded to the cumulative
hazard of gene-wise significance scores from two-way ANOVA
testing of the linear predictor of RPM from GLM of the
natural parameter B(ϑ) to an exponential continuous-valued
distribution with a canonical inverse link function (Nelder
and Wedderburn, 1972). Gene-wise significance of Log2FC
variation based on weighed ANOVA inference testing were
adjusted by the Benjamini–Hochberg method for multiple
comparisons (Benjamini and Hochberg, 1995). Further details
on the statistical treatment of count-level data under the
LSTNR method are available in the Supplementary Methods
section. All metrics and statistical analyses were carried
out using JMP R© 13.0.0 64-bit statistical software (SAS,
Cary, NC).

Stratification of Significantly Expressed
Genes
Significant genes (SGs) were identified as those with significantly
different weighed ANOVA scores (FDR adj. p < 0.05);
DEGs equaled the subset of SGs with a minimum practical
effect size δLog2FC > δEffect and post-hoc pairwise-significant
Log2FC differences between at least two groups (Student’s
t-test p < 0.05). As a reproducibility benchmark, we refer to
LSTNRs as the subset of SGs in which a minimum practical
effect size δLog2FC > δEffect was detected and at least one
group exhibits average Log2FC signal vs. baseline greater
than transcriptome-wide measurement noise (or SNR > 1)
where noise is defined as the 95% Tolerance Interval (Odeh
and Owen, 1980; Hahn and Meeker, 1991; Tamhane and
Dunlop, 2000) of gene × group residuals among SGs.
Finally, we refer to the subset of genes classified as both
DEGs and LSTNRs as DEGs with reproducible expectation
estimates (DEGREEs)—i.e., genes with relevant effect size,
significant post-hoc pairwise differences, and prospective
SNR > 1.

Extraction of Candidate Genes for
Transcriptional Profiling and Biomarker
Analysis
To extract a list of DEGREEs with the highest transcriptional
profiling potential and minimal Type II error rates, we calculated
within-gene observed effect sizes (1Log2FC), as well as estimated
retrospective statistical power means (≪π≫) and 95% lower
confidence limits (πlow). DEGREEs with π > 90% were listed
in descending order by 1Log2FC first, and then by πlow. The
difference between successive values of 1Log2FC going down
the list of ranked DEGREEs (also known as lag differences)
were calculated, with the expectation that genes with higher
retrospective statistical power also show larger 1Log2FC values;
when true, this expectation results in a list of negative-valued
lagging differences. The minimal subset of characteristic genes,
or Profiler DEGREEs, corresponds to the subset of DEGREEs
ranked by πlow that all show negative 1Log2FC lag differences
before the first positive instance is found.

To obtain a reductive set of biomarker gene candidates, we
performed sequential partition tree analysis (without repetition)
based on the list of Profiler DEGREEs. The predictive machine-
learning power of partitioned data is reported graphically
via receiver operating characteristic (ROC) curves specific to
each known phenotype. The minimum number of biomarkers
needed for partitioning equals the number of phenotypes being
partitioned minus one. Partitioning performance was then
evaluated by all-at-once discriminant analysis based exclusively
on the data from the biomarkers selected by sequential
partitioning. Predictive machine-learning power of the canonical
multivariate factors of discrimination, estimated using only
biomarker data, is reported graphically via ROC curves for
each expected phenotype. Phenotype segregation is depicted
in multivariate space using 2-component canonical factor
plots.
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FIGURE 1 | LSTNR method workflow. The schematic depicts the main steps involved in detection of statistically significant genes (SGs) starting from uniquely aligned

reads for each gene in individual samples: coverage normalization as reads per million total sequenced reads (RPM); parametric distribution fitting; independent

filtering based on fit parameters; generalized linear modeling (GLM), leading to gene resolution weights; log-fold expression measurements (Log2FC) vs. a fixed

reference; and two-way resolution-weighed ANOVA of Log2FC. Top right: stratification criteria for SGs and their respective nomenclature: differentially expressed

genes (DEGs), leveraged signal-to-noise-ratio genes (LSTNRs), and DEGs with reproducible expectation estimates (DEGREEs). The subset of Profiler DEGREEs

corresponds to DEGREEs with a mean retrospective statistical power ≪π≫ > 90% which, when ranked by within-gene observed effect sizes (1Log2FC) first and by

their 95% lower confidence limit of retrospective statistical power (πlow) next, show monotonically decreasing 1Log2FC values. Profiler DEGREEs can then be used for

benchtop validation or for additional statistical analysis to obtain a reductive set of prospective biomarkers through a variety of machine-learning analytics (e.g.,

partition trees, canonical factor analysis).

Analyzed Datasets
For this work, an in silico dataset of simulated RNAseq counts—
originally assembled in the development of EPIG-seq (Li and
Bushel, 2016)—was used to validate the performance of the
LSTNR method. In addition, the ability of the LSTNR method to
extract transcriptional signatures and expression patterns from
experimental data was tested on two publicly available RNAseq
data sets: one for breast cancer primary tumors under 4 breast
cancer molecular subtypes deposited in The Cancer Genome
Atlas (TCGA) (Cancer Genome Atlas, 2012), and another one
from the MAQC phase III SEQC crowd source toxicogenomics
(TGxSEQC) effort using livers of male Sprague-Dawley rats after
exposure to hepatotoxic agents sharing modes of action (MOA)
(Gong et al., 2014; Wang et al., 2014). Further details for each
of the three datasets in this study, as well as gene annotation
conventions used for each, are outlined in the Supplementary
Methods section.

RESULTS

EPIG-Seq Simulated Data
We used a data set of simulated RNAseq counts to validate
the performance of the LSTNR method. The simulated data
set was originally assembled in the development of EPIG-
seq, a similarity scoring methodology for count-based data
that catalogs co-expressed genes under patterns of differential
expression among multiple conditions (Li and Bushel, 2016). To
perform independent filtering, we fit empirically observed RPM
averages from each of the 20,000 simulated pseudogenes across
the entire 140-pseudoreplicate set to parametric distribution
functions. We found the best fit model corresponded to
a 3-parameter lognormal distribution (Figure 2A), which is
equivalent to a normal distribution of RPM in logarithmic
scale, with a threshold value γ representing the minimum and
positive value of gene-wise average RPM supported by the
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FIGURE 2 | Analysis of EPIG-seq in silico test data by the LSTNR method. (A) Quantile plot of pseudogene-averaged RPM across pseudoreplicates, overlaid onto

their best-fit threshold lognormal distribution parametric model (purple); shading around the parametric fit represents the simultaneous 95% confidence interval of

predicted means. (B) Linear fitting and distribution of relative expression metrics for pseudogene × group blocks with respect to individual pseudoreplicates. Left:

average of Log2FC measurements vs. Log2FC from individual pseudoreplicates; right: values of the canonical link function log (RPM) of pseudoreplicates vs.

pseudogene × group block averages of the linear predictor function, ≪B(θ)≫, estimated by GLM. Colors of individual data points corresponds to the estimated

quantile density of Log2FC values in mean vs. replicate space (left panel) as indicated by the adjacent color scale. (C) Gene resolution weights as a function of

FDR-adjusted significance levels of pseudogenes as determined by pseudogene × group two-way ANOVA based on the linear predictor B(θ). Point coloring

corresponds to that in B; size of each data point is representative of pseudogene-averaged RPM across pseudoreplicates. (D) Distribution of range-scaled residuals

around the average of pseudogene × group blocks before (left) and after (right) multiplying Log2FC measurements by gene resolution weights depicted in (C); point

coloring corresponds to that in (B). (E) Heatmap plot for two-way unsupervised clustering of pseudoreplicates (horizontal) and 4,541 significant pseudogenes (FDR

p < 0.05) detected by LSTNR analysis based on Log2FC vs. the mean RPM in the baseline group. Left: bird view of the entire heatmap; center: magnification to subset

(Continued)
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FIGURE 2 | of 1,000 pseudogenes from five simulated co-expression patterns and their correspondence with inferred hierarchical clades; right: heatmap is colored

on a green-black-red gradient scale of Log2FC values relative to baseline (green, downregulated; black, same; red, upregulated). (F) Distribution of net residuals

around pseudogene×group Log2FC averages, based on 20,000 analyzed pseudogenes (before LSTNR testing) and 4,541 pseudogenes with statistically significant

resolution-weighed differences (after LSTNR testing). Dotted blue lines to the left and right of the x-axis origin enclose the predicted 95% tolerance interval of residuals

in each respective plot. (G) Average Log2FC expression ± s.d. of pseudogenes in simulated patterns vs. inferred clades of co-expression across groups.

(H) Heatmap depicts Pearson’s correlation coefficient r values between 4,541 statistically significant pseudogenes. Pseudogenes are displayed by groups of inferred

co-expression clades; heatmap is colored on a blue-white-red gradient scale of Pearson’s correlation coefficient r values (blue, negative correlation; white, not

correlated; red, positive correlation). N = 35 pseudoreplicates in each of 4 simulated condition groups: baseline, and groups 1 to 3; number of simulated

co-expression patterns: five, with 200 pseudogenes each. Simulation comprises 140 total pseudoreplicates with reads distributed among 20,000 total pseudogenes.

fitted distribution. We reasoned the fitted threshold γ = 2.4
× 10−3 (95% prediction CI: 0.9 × 10−3-3.5 × 10−3) was the
best candidate value to use for independent filtering across
pseudogenes with simulated reads. In the case of this simulated
data set, independent filtering against the threshold parameter
γ did not exclude any pseudogenes from subsequent analysis—
meaning all listed pseudogenes were “detectable” assuming the
estimated error model of simulated read counts was properly fit
by a lognormal distribution (Table 1).

The next step to implement the LSTNR method was
to find a metric that places RPM-values from each of the
detected pseudogenes (i.e., that passed independent filtering)
in the context of the entire dataset to describe the relative
resolution in detected RPM-values for each pseudogene. This
can be achieved through generalized linear modeling, or GLM
(Nelder and Wedderburn, 1972). In the case of the EPIG-
seq in silico data, which followed a lognormal distribution,
rewriting in exponential family form showed the linear predictor
B= log(RPM) (Figure 2B). Further algebraic inspection revealed
the best model to match averages of lognormally distributed
B with their underlying variation is a normal distribution.
Thus, transformant values of B did not require a normalizing
manipulation (i.e., η = B) going further down the LSTNR
pipeline.

Transformant log(RPM) B-values were tested by two-way
ANOVA to estimate transformant significance scores for each
pseudogene; after multiple testing adjustment by the false-
discovery rate approach (Benjamini and Hochberg, 1995),
we found transformant FDR p < 0.05 in 9,492 of the
20,000 total pseudogenes, meaning 47.46% of all pseudogenes
showed variability in read counts in one or more groups
that was statistically discernible (resolvable) from that of all
pseudoreplicates combined (Table 1). We then ranked those
transformant significance scores from least to most significant
and calculated their position within the ranking; this is the
complement of the cumulative density function, also known
as the survival function. Finally, to create a metric that gives
higher weight to pseudogenes detected with better resolution,
we took the negative logarithm of the survival for transformant
significance scores function (known as the cumulative hazard
rate). This metric is smallest for pseudogenes with low resolution
in RPM-values that change little across replicates, and largest
for pseudogenes with RPM-values that are either very large,
very variable or both (Figure 2C). We estimated these metrics
and assigned them to their corresponding pseudogenes; later on,
we used them as “resolution weights” to account for different
resolution levels for pseudogenes based on their net read counts.

TABLE 1 | Step-by-step output as numbers of qualifying genes along the LSTNR

analytical pipeline for a validation in silico dataset (courtesy of Li and Bushel, 2016;

doi: 10.1186/s12864-016-2584-7).

Criteria In Silico: EPIG-seq

(N = 140)

Simulated pseudogenes 20,000

Distribution of pseudogene-wise RPM means P(y) ∼

Normal3P (log[y];σ
′,µ′,γ);

y = RPM

σ′ = 25.4

µ′ = 25.4

γ = 2.5×10−3 RPM

Independent filtering:

pseudogenes with average y > γ 20,000

Linearized normalizing transformant:

GLM Linear Predictor Log[y]

Transformant two-way ANOVA:

resolved pseudogenes across groups with respect to

pseudogene-wise mean

9,492

Resolution-weighed ANOVA:

significant pseudogenes with FDR adj. p < 0.05 based

on differences in resolution-weighed RPM log-fold

changes (Log2FC) relative to baseline group

4,541

To detect significantly expressed pseudogenes, we first
calculated log2-fold changes (Log2FC) relative to the average
RPM in the baseline group for each gene; then, we combined
Log2FC of genes with their resolution weights in a two-way
multivariate ANOVA model. We reasoned that scaling Log2FC
relative expression measurements by their resolution metric
would also homogenize the scale of variation around the means
of individual genes in each experimental statistical group. Indeed,
we found that the relative dispersion and homogeneity of Log2FC
residuals improved after scaling by gene resolution weights
(Figure 2D). In all, we detected 4,541 statistically significant
pseudogenes by resolution-weighed two-way ANOVA (FDR adj.
p < 0.05). This pool of statistically significant pseudogenes
contained all 1,000 differentially expressed pseudogenes with
simulated co-expression patterns, as well as an extra pool of
3,541 pseudogenes from the unpatterned group exhibiting only
random noise (Figure 2E).

One important aspect to consider in benchtop validation
of RNAseq experiments is how well the dispersion in RNAseq
output can be projected. This projection is critical to confirm
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RNAseq estimates by qPCR, since it helps determine both:
(a) how large should RNAseq expression differences be in
validation assays to be reliable; and (b) which genes are the most
reliable validation candidates based on their RNAseq expression
differences. With that principle in mind, we calculated 95%
tolerance intervals around the mean log2(RPM) measurements
of all 20,000 pseudogenes in the EPIG-seq simulated data set
that passed independent filtering, as well as among the 4,541
statistically significant pseudogenes identified after resolution-
weighed ANOVA. We found log2(RPM)95%TI = ±7.7 among all
20,000 pseudogenes, and log2(RPM)95%TI = ±7.0 among 4,541
statistically significant ones. In other words, assuming these data
were derived from a “true” sample of biological specimens, one
could project with 95% confidence that 95% of differences in
expression between groups, and for any particular pseudogene,
may be ∼200-fold off from their “true” expected value, or ∼130-
fold when adjusted for noise among significant pseudogenes, due
only to experimental variability between replicate experiments
(Figure 2F).

The unpatterned pseudogenes with statistically significant
expression levels detected through LSTNR could aggregate to
excessive levels of “background noise.” This “noise” could be
detrimental to statistical clustering or discriminant analyses, and
may undermine the capacity to extract “true” expression patterns.
To address this point, we performed naïve hierarchical clustering
(Ward’s method) and found that, even though unpatterned
pseudogenes accounted for most of the detected differential
pseudogenes overall, all differentially expressed pseudogenes
were agglomerated in the hierarchical tree under simulated
patterns. We also found that the 3,541 unpatterned but
statistically significant pseudogenes were segregated apart from
the 1,000 patterned ones (Figure 2E). Furthermore, 927 out of
the 1,000 patterned differential pseudogenes were assigned into
five well-separated clades of expression trends that matched the
co-expression patterns prescribed in silico (contingency analysis
Pearson’s p < 0.0001). Altogether, the LSTNR method detected
statistically significant pseudogenes belonging to both patterned
and unpatterned expression trends, but did not compromise the
ability to discriminate between both kinds of pseudogenes, nor
their correct expression patterns, by standard clustering analyses.

Still, any benefit of implementing the LSTNR workflow is
only substantial if it matches or surpasses the performance
of already existing methodologies to tease out coordinated
patterns of differential gene expression, such as EPIG (a pipeline
tailored for microarray data) and EPIG-seq (a modified version
of EPIG to handle count-based data) (Chou et al., 2007;
Li and Bushel, 2016). To address this point, we assembled
the confusion matrix of pseudo-gene cluster assignments per
LSTNR analyses of the in silico dataset, and compared to
those obtained by EPIG and EPIG-seq analyses (courtesy of
Li and Bushel, 2016) in terms of the sensitivity (the true
positive rate) and specificity (the true negative rate) of inferred
cluster membership among differential pseudo-genes detected
per platform (Table 2). We found the LSTNR method showed
>94.5% specificity rates across simulated clusters, much like
those from EPIG and EPIG-seq, thus indicating that pseudo-
genes identified as differentially expressed are rarely misclassified

under their originally prescribed expression patterns regardless
of the chosen methodology. However, LSTNR detected more
differential pseudo-genes than either EPIG or EPIG-seq, as
shown by improved sensitivity rates per cluster when using
LSTNR (77.5–100%) vs. either EPIG (17.5–68%) or EPIG-seq
(55.5–84.5%). Put together, these results indicate that the LSTNR
method successfully extracts more DEGs, all while grouping
them by their true underlying expression patterns at the same or
improved rates, than other similar pipelines.

Among the 927 differential pseudogenes correctly assigned
to simulated patterns of expression detected by the LSTNR
method, 400 were classified into clades that matched their in silico
counterparts in full (patterns B and D); in contrast, the EPIG-
seq method matched pseudogenes completely to their simulated
pattern only for B. The five hierarchical clades identified by
LSTNR also matched their respective in silico patterns in
terms of average expression levels within statistical groups
(Figure 2G). We found similar pattern-detection performance
among the 4,541 statistically significant pseudogenes detected
with the LSTNR method when clustering them by the Pearson
product-moment correlation scores of their Log2FC vs. the
baseline average (Figure 2H). In sum, the LSTNR method not
only identified the five simulated expression patterns just like
the EPIG-seq pipeline, but did so by assigning differential
pseudogenes to their correct patterns with greater accuracy, by
routing read count data to traditionally robust statistical tests
(e.g., multivariate ANOVA), and without relying on user-defined
parameters.

Breast Cancer Classification by
Hierarchical Clustering of LSTNR-Detected
DEGs
Next, we used RNAseq data from breast ductal carcinoma
biopsies deposited in The Cancer Genome Atlas (TCGA) to test
the LSTNR method. The data set collected for this assessment
consisted of 160 primary tumors classified under 4 breast cancer
molecular subtypes groups in equal sample sizes (luminal A,
luminal B, Her2-enriched and basal-like) and 40 matching
normal breast tissue biopsies as controls (Cancer Genome
Atlas, 2012). Besides consisting of patient-derived data that is
clinically relevant, this collection of TCGA specimens presents
some practical and common challenges associated with clinical
data, including high variability between patients and between
cohorts from an epidemiological perspective, and batch effects
from a technical one. All these challenges, which severely
undermine significance testing, have clinical consequences: if the
only solution to understand the performance of RNAseq as a
diagnostic tool is to design large patient cohorts, it risks rendering
RNAseq too expensive or slow to be useful in a clinical setting.
Here, our goal was to implement the LSTNR method and define
how successful it was in sorting out the correct breast cancer
molecular subtypes (and their transcriptional signatures) based
on a much smaller cohort of patient-derived specimens than the
TCGA database itself.

We analyzed TCGA dataset following two approaches: (a) we
split the specimens from each of the four molecular subtypes
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TABLE 2 | Confusion matrices for differential pseudo-gene pattern assignment by EPIG, EPIG-seq, and LSTNR implementation based on a validation in silico dataset

(EPIG and EPIG-seq: courtesy of Li and Bushel, 2016; doi: 10.1186/s12864-016-2584-7.

Method Clustered Clades Simulated Expression Pattern Total Sensitivity (%) Specificity (%)

Pattern A Pattern B Pattern C Pattern D Pattern E

EPIG Group A 0 0 46 0 0 46 23 100

Group B 0 0 0 0 136 136 68 100

Group C 0 39 0 0 0 39 19.5 100

Group D 0 0 0 60 0 60 30 100

Group E 35 0 0 0 0 35 17.5 100

EPIG-Seq Group A 7 132 11 0 0 150 66 98.2

Group B 0 0 169 0 0 169 84.5 100

Group C 135 26 5 0 0 166 67.5 96.9

Group D 0 0 0 15 166 181 83 98.5

Group E 9 23 0 111 43 186 55.5 92.5

LSTNR Clade A’ 177 0 12 0 4 193 88.5 98.4

Clade B’ 0 200 0 0 0 200 100 100

Clade C’ 1 0 155 0 1 157 77.5 99.8

Clade D’ 0 0 0 200 0 200 100 100

Clade E’ 22 0 33 0 195 250 97.5 94.5

into four independent and mutually exclusive sample subsets (or
realizations) of equal size, performed parallel statistical analyses
for each, and identified the subset of DEGs detected in common
by all four separate per-realization analyses; and (b) we analyzed
the entire dataset all at once in a single run. Altogether, this
strategy comprised a total of 5 separate implementations of the
LSTNR method on patient-derived breast cancer data: four per-
realization analyses and one single-shot analysis. By following
this analytical design, we sought to establish the degree of
observed concordance between DEGs detected by a single-shot
analysis vs. the consensus from multiple tests on subsampled
statistical groups. We also aimed at determining whether
capturing more DEGs with an all-encompassing single-shot
analysis is superior in quality and performance to performing
split tests in tandem and extracting a consensus DEG list.

A total of 20,532 annotated genes (hg19) with uniquely aligned
reads were represented in any one of the specimens used to
test the LSTNR method. Empirically observed RPM averages
within realizations were fit to parametric distribution functions
independently. In all cases, the best-fit model for within-
gene RPM averages corresponded to a 3-parameter Weibull
distribution function P(y) ∼Weibull3P(y;α,ß,γ) where y = RPM
(Figure 3A); the estimates for the threshold parameter γ in each
separate realization ranged between 1.5 × 10−3-11 × 10−3 RPM
(Table 3). The threshold parameter γ, representing the minimum
average RPM-value explained by the parametric Weibull fit, was
added across the dataset to circumvent arithmetic issues with
zero-valued data when estimating relative expression ratios.

It is well-known that, for GLM, Weibull distributions with
fixed shape parameter ß can be restated by simple algebraic
substitution in the form of an exponential distribution, for
which the linear predictor B∼(y–γ)ß−1 and the normalizing link

function η ∼ 1/B (Nelder and Wedderburn, 1972; Aitkin and
Clayton, 1980). Therefore, to determine the resolution level of
detected reads per gene, we calculated transformant B-values
from within-gene RPM averages, normalized their distribution
by using their reciprocal values, and tested them by multivariate
ANOVA (see Supplementary Methods for details). Analysis of
the entire dataset at once also identified, with parameters almost
equal to the ones estimated from realizations, a 3-Parameter
Weibull distribution as the best parametric fit (Table 3).

The number of retained genes following independent filtering
with respect to the Weibull scale parameter α (Table 3)
was about the same in all five analyses (8,005–8,562 across
realizations; 8,538 single-shot), yet the estimated number of
significantly resolved genes, defined by genes with transformant
FDR p < 0.05, was sensitive to the realization they came
from. The number of resolved genes varied by up to one
order of magnitude (e.g., 381 genes in realization 2 and
4,295 genes in realization 1). Even though the number of
resolved genes estimated by single-shot analyses (2,851 total
with transformant FDR p < 0.05) fell within the order of
magnitude resolved genes by the other four per-realization
analyses, it was still over 50% larger than the average of
1,899 resolved genes per realization (Table 3). These findings
illustrate that the independent filtering criteria used to exclude
poorly represented genes were equally valid whether they were
calculated from a subset or from the entire set of individual
specimens in an experiment. In contrast, estimates of the
dynamic range of sequencing representation are off-target when
using different data subsets. Therefore, expecting independent
RNAseq experiments to detect the same pool of significantly
resolved genes is sensible only when the replicate sets in one
experiment are statistically indistinguishable from the replicate
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FIGURE 3 | Molecular subtype discrimination of transcriptional signatures from patient-derived breast cancer specimens using the LSTNR method by split-pool and

single-shot approaches. (A) Quantile plot of gene-averaged RPM across replicates, overlaid onto best-fit threshold Weibull distribution parametric models per

individual realization; fit lines and points are colored by the realization they were tested under. (B) Gene resolution weights calculated within each realization, as a

function of FDR-adjusted significance levels of genes, based on linear predictor B(θ) gene × group two-way ANOVA. Point coloring indicates realization tested; size of

each data point is representative of gene-averaged RPM across replicates within each realization; also, the top 10 genes found in all realizations with highest RPM

scores, and their identities, are shown with dark outlines. (C) Venn diagram depicting the number of shared gene symbols among consensus SGs, DEGs, LSTNRs,

and DEGREEs identified in all realizations. (D) Venn diagram depicting the concordance between DEGREEs detected by all-at-once single-shot analysis of the TCGA

(Continued)
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FIGURE 3 | dataset vs. the set of consensus DEGREEs identified across separate realizations. (E) Heatmap plots for two-way unsupervised clustering of all

specimens (horizontal) and DEGREEs detected by single-shot analysis (top) or consensus across realizations (bottom) based on differential expression levels. Coloring

of row dendrograms and labels represent the phenotype as annotated in TCGA database for each specimen. Dot columns on the left of heatmap plots depict inferred

specimen clades via unsupervised clustering of depicted genes in each heatmap separately. Right: heatmaps are colored on green-black-red gradient scales of

Log2FC values relative to baseline (green, downregulated; black, same; red, upregulated). (F) Three-factor discriminant analysis and plots of tested specimens based

on Log2FC measurements of single-shot DEGREEs (top) vs. consensus DEGREEs (bottom). Coloring of lines and points in depicted plots represent the phenotype as

annotated in TCGA database for each specimen. ROC curves and their AUC values are also shown. (G) Volcano plots of 200 Profiler DEGs across all breast cancer

subtype specimens relative to normal group; y-axis: post-hoc pairwise significance scores of Log2FC measurements; x-axis: mean Log2FC vs. mean RPM of normal

specimens. (H) Heatmap depicts Pearson’s correlation coefficient r-values between 200 Profiler DEGREEs. Order of Profiler DEGREEs corresponds to their

arrangement by unsupervised clustering, as shown in (E). Heatmap is colored on a blue-white-red gradient scale of Pearson’s correlation coefficient r-values (blue,

negative correlation; white, not correlated; red: positive correlation). (I) Heatmap plots of all breast cancer specimens sorted by phenotype and replicate number

(rows) vs. Profiler DEGREEs detected by consensus across realizations (columns) based on differential expression levels. Order of Profiler DEGREEs corresponds to

their arrangement by unsupervised clustering, as shown in (E,H). Coloring of row labels represent the phenotype as annotated in TCGA database for each specimen.

Right: heatmap is colored on a green-black-red gradient scale of Log2FC values relative to normal specimens (green, downregulated; black, same; red, upregulated).

(J) Inferred diagnostic biomarkers of breast cancer subtypes by sequential partitioning tree analysis of Profiler DEGREEs. Coloring of lines and points in depicted plots

represent the phenotype as annotated in TCGA database for each specimen. Partition analysis ROC curves and their AUC values are also shown. N = 40

independent specimens per breast cancer molecular subtype: normal, luminal A, luminal B, HER2+, and basal-like. Specimen classification as annotated in TCGA

database. TCGA dataset comprises 200 total individual specimens with reads aligned onto 20,532 genes overall, analyzed as a whole (single-shot) or evenly split into

four separate and mutually exclusive realizations (split-pool). Reference genome: hg19.

sets in another—an expectation that is grossly misguided among
patient-derived specimens.

Significance scores of estimated RPM transformants are only
as good as the samples they reflect, and will change depending
on whether variation within statistical groups is more or less
heterogeneous for different subsets. We premised that each
of the subsets is representative of the entire set, and that
ranking of the significance scores of genes should be similar
across subsets no matter their actual p-values; that was the case
when we calculated resolution weights of genes per realization
(Figure 3B). Interestingly, we found that many genes at the high-
end of the resolution weight curve tended to show high read
count numbers, yet many genes with high RPM averages showed
poor significance scores for their transformant B-values. These
results suggested that average RPM of genes, though likely to
capture finer differences, were not reliable predictors of gene
expression resolution.

We then performed resolution-weighed multivariate ANOVA
tests of Log2FC differences relative to the average of normal
tissues, either per realization or single-shot. We found that, by
including resolution scaling, the number of detected significant
genes (SGs) became more consistent: between 4,465 and 5,086
SGs from the four independently analyzed realizations, and 6,193
SGs by the single-shot analysis (Table 3; see Table S1 for gene
symbols). These results were striking because the resolution
scaling strategy of the LSTNR method effectively stabilized the
number of detected SGs across all five separate tests, even though
the number of genes with significant transformant variation
(FDR p < 0.05) were quite different in each of these separate
analyses (as mentioned earlier).

In all, we found a common pool of 1,617 SGs across all
four realizations (Table 3; see Table S1 for gene symbols),
corresponding to 32–36% concordance rates with respect
to the total SGs in each one separately (range of SGs
per realization: between 4,465 and 5,086). Those observed
concordance rates carried down to increasingly stringent levels
of stratified practical significance across separate realization
tests (see section Materials and Methods and Supplemental

Materials for further details): from the pool of 1,617 common
SGs from per-realization analyses, we detected 976 DEGs
(vs. number of DEGs between 3,377 and 3,736 in separate
realizations; 26–29% concordance rates), and 368 LSTNRs
(vs. number of LSTNRs between 1,102 and 1,370 in separate
realizations; 27–33% concordance rates). Overall, between DEGs
and LSTNRs, we found an intersecting set of 366 genes (37% of
DEGs), which we termed DEGs with reproducible expectation
estimates (DEGREEs) because they: (a) were statistically
significant when adjusted for sequencing resolution; (b) showed
Log2FC variation between groups greater than a reference 5%
practical effect size; (c) exhibited post-hoc pairwise significant
differences in Log2FC between groups; and (d) exhibited Log2FC
differences with SNR > 1 relative to transcriptome-wide Log2FC
measurement error (Figure 3C). Likewise, refining the pool of
6,193 single-shot SGs with additional stringency resulted in
6,093 DEGs and, among them, 1,511 LSTNRs all contained
within the DEG pool. Hence, all 1,511 LSTNRs (or 25% of
DEGs) were also DEGREEs (Table 3; see Table S1 for gene
symbols).

Next, we interrogated whether detected SGs were similar
between per-realization and single-shot analyses at different
levels of statistical stringency. Of the 1,617 common SGs across
realizations, 1,509 (over 93%) were also among the 6,193
SGs detected in the single-shot analysis using the entire data
set. This means that about three out of four (75.6%) of all
SGs identified by single-shot testing of the entire dataset are
not replicated in parallel tests of mutually exclusive subsets
of samples from the same experiment. We then evaluated
the concordance rates between intersecting genes across per-
realization vs. single-shot analyses, and detected final overlaps
of 908 DEGs (93% concordance w.r.t. common per-realization
pools; 15% concordance w.r.t. single-shot pool), 337 LSTNRs
(92% concordance w.r.t. common per-realization pools; 22%
concordance w.r.t. single-shot pool), and 336 DEGREEs overall
(92% concordance w.r.t. common per-realization pools; 22%
concordance w.r.t. single-shot pool) (Figure 3D and Table 3; see
Table S1 for gene symbols).
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TABLE 3 | Step-by-step output as numbers of qualifying genes along the LSTNR analytical pipeline for RNAseq data deposited in TCGA from four realizations of

patient-derived breast cancer transcriptomes across four molecular subtypes (courtesy of Li and Bushel, 2016; doi: 10.1186/s12864-016-2584-7).

Criteria Breast Cancer Molecular Subtypes (TCGA) (N = 200)

Realization 1

(N = 50)

Realization 2

(N = 50)

Realization 3

(N = 50)

Realization 4

(N = 50)

All Specimens

(N = 200)

Genes with uniquely aligned reads 20,532

Distribution of gene-wise RPM means P(y) ∼ Weibull3P (y;α,ß,γ); y = RPM

α = 25.4 RPM α = 24.1 RPM α = 25.0 RPM α = 21.9 RPM α = 22.2 RPM

ß = 0.53 ß = 0.53 ß = 0.54 ß = 0.49 ß = 0.49

γ= 9.9× 10−3 RPM γ= 6.6× 10−3 RPM γ= 1.1× 10−2 RPM γ= 1.6× 10−3 RPM γ= 1.5× 10−3 RPM

Independent filtering:

Genes with average y > α 8,005 8,110 8,083 8,562 8,538

Linearized normalizing transformant:

GLM Linear Predictor

(y–γ)ß−1

Transformant two-way ANOVA:

resolved genes across groups with respect to

gene-wise mean

4,295 381 638 2,281 2,851

Resolution-Weighed ANOVA:

Significant Genes (SGs) with FDR adj. p < 0.05

based on differences in resolution-weighed RPM

log-fold changes (Log2FC) relative to baseline

condition

4,465 5,086 4,537 4,618 6193

Altogether: 7,749 Final Overlap:

1,509

Intersection: 1,617

Differential expression:

DEGs = subset of SGs that exhibit both:

• resolution-weighed effect size above 5% of

gene-wise variation (δLog2FC >0.3×σSSR); and

• post-hoc pairwise-significant Log2FC differences

between at least two groups (Student’s t-test

p < 0.05)

3,736 3,377 3,497 3,617 6,093

Altogether: 6,407 Final Overlap:

908

Intersection: 976

Reproducibility:

LSTNRs = subset of SGs that exhibit both:

• resolution-weighed effect size above 5% of

gene-wise variation (δLog2FC >0.3×σSSR); and

• at least one group with Log2FC differences vs.

baseline greater than 95% Tolerance Interval of

gene×group residuals among SGs (post-hoc

pairwise-significance not required)

1,370 1,102 1,130 1,210 1,511

Altogether: 2,193 Final Overlap:

337

Intersection: 368

Expectable DEGs:

DEGREEs = Ensembl-annotated DEGs with a

reproducible expectation estimate (i.e., DEGs that

are also LSTNRs) and official Entrez symbol

Intersection: 366 1,511

Final Overlap:

336

(Continued)
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TABLE 3 | Continued

Criteria Breast Cancer Molecular Subtypes (TCGA) (N = 200)

Realization 1

(N = 50)

Realization 2

(N = 50)

Realization 3

(N = 50)

Realization 4

(N = 50)

All Specimens

(N = 200)

Transcriptional profiling:

Profiler DEGREEs = top DEGREEs

ranked by retrospective statistical

power with monotonically decreasing

within-gene effect sizes 1Log2FC

200 Profiler DEGREEs (consensus)

Diagnostic targets:

Biomarkers = minimal subset of

Profiler DEGREEs with predictive

discriminant power based on

sequential partition tree analysis (ROC

scores>0.9 per phenotype)

CBX7, ESR1, FOXC1, and FOXM1

We also asked to what extent using DEGREEs as a gene
set of choice for transcriptome-based phenotype segregation
was adequate, and whether using a consensus minimal set was
superior than using a larger set of DEGREEs extracted from
a single-shot differential expression analysis. To do this, we
performed two-way unsupervised hierarchical clustering (Ward
method) of the entire set of 200 specimens based on Log2FC
expression differences vs. normal breast biopsies with: (a) 366
consensus DEGREEs across all per-realization analyses; and (b)
the 1,511 DEGREEs identified from the single-shot analyses. We
found that unguided sorting of specimens in hierarchical clusters
was in agreement with the known molecular classification
of the specimens, irrespective of the set of DEGREEs used
(Figure 3E). An alternative test, discriminant analysis, also
showed that separation of specimens in multifactorial space
was highly predictive of the correct phenotype. Surprisingly,
the same tests also revealed that discrimination and predictive
power both were superior when using the consensus set of 366
DEGREEs (0% misclassified specimens) instead of the larger set
of 1,511 DEGREEs from single-shot analysis (3.5% misclassified
specimens) (Figure 3F). This outcome suggests that the LSTNR
method not only extracted the same phenotype groups by
splitting specimens into parallel data subsets and extracting
a consensus DEG set rather than using the entire cohort at
once, but profiled them successfully using far fewer genes and
specimens, and with greater accuracy, than ever reported (Perou
et al., 2000; Sørlie et al., 2001; Cancer Genome Atlas, 2012).

The objective of collecting clinical data from large cohorts,
as those in TCGA, is to determine what are the most reliable
diagnostic signatures that distinguish closely related diseases.
Thus, we tested the ability to discriminate breast cancer subtypes
when using the smallest possible set of genes with reproducible
expression differences that we detected by LSTNR. To that end,
we selected a minimal set of 200 consensus DEGREEs that
exhibited, simultaneously, the largest within-gene retrospective
statistical power (≪π≫ >90%) and within-gene effect size
1Log2FC; we termed these Profiler DEGREEs (Table 3; see Table
S1 for gene symbols). We observed >1.66-fold statistically

significant post-hoc pairwise absolute differences (p < 0.05) in
at least one of the four breast cancer subtypes vs. normal tissue
biopsies in each of the 200 Profiler DEGREEs (Figure 3G), which
also showed highly correlative associations (Figure 3H). The
increased statistical strength of Profiler DEGREEs over all other
sequenced genes was sufficient to distinguish different expression
patterns among the 200 breast tissue specimens by ordering them
by subtype (Figure 3I).

Finally, to extract a minimal set of diagnostic biomarkers, we
performed sequential partition tree analysis and defined what
subset of genes among the 200 Profiler DEGREEs had the highest
discriminative power. We found that breast cancer subtypes
could be assigned with >90% diagnostic accuracy, as indicated
by the area under the ROC curve of the partition tree, by
differential expression analysis with respect to a normal breast
tissue reference using only 4 genes: CBX7, ESR1, FOXC1, and
FOXM1 (Figure 3J). Of the four biomarkers we detected, ESR1 is
the only one in common with the reported signature for luminal
breast cancers (ESR1, GATA3, FOXA1, XBP1, and cMYB)
(Cancer Genome Atlas, 2012). Notably, only ESR1, GATA3, and
XBP1 are also present in our list of Profiler DEGREEs. The
fact that we detected closely related transcription factors other
than FOXA1 and cMYB specifically, i.e., four members from
the FOX family (FOXC1, FOXM1, FOXN3, FOXO1) and one
from the MYB family (MYBL2), lends confidence to our analysis,
which captured the same underlying biological mechanisms that
distinguish each breast cancer subtype. However, our analysis
achieved the same results with a considerably smaller cohort
(N = 200) than the one reported previously by the TCGA
consortium (N = 825) (Cancer Genome Atlas, 2012).

In all, these results confirm that single-shot analyses of
differential gene expression yields higher numbers of detected
significant differences as sample size grows. However, they also
suggest that statistical testing of excessively large sample sizes
at once comes at the expense of experimental reproducibility,
regardless of statistical stringency. Instead, data splitting into
modestly sized subsets of samples for parallel statistical analysis
can extract a minimal set of representative DEGREEs shared
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among parallel per-realization tests.We showed that the resulting
consensus DEGREE set shows a higher chance of reproducibility.
Furthermore, split data processing allows for multi-threaded
computation, which in principle accelerates data analysis speed
and performs at a much more accessible computational footprint
than a single-shot analysis.

Most importantly, a minimal consensus set of DEGREEs
deduced by parallel subsampled analyses is not only more
statistically powerful in theory, but also more useful in practice.
Because any inferred biomarkers need to be experimentally
validated, diagnosing between disease phenotypes by gene
expression assays is more amenable and affordable at the bench
when the number of targets is kept at their fewest; it is also
less prone to practitioner’s mistakes, and easier to translate to
clinical practice. In the case of breast cancer subtypes, the LSTNR
method excelled in extracting a theoretical minimum number
of diagnostic biomarkers (a total of 4) necessary to discriminate
among 4 predetermined subtypes. In practice, diagnostic testing
can be carried out to validate findings, to confirm observations
by other researchers, or for clinical purposes where sample
numbers are limiting. Our data indicate using the 4 biomarkers
detected by LSTNR to diagnose breast cancer subtypes would
be at least as reproducible as using 50-gene subtype predictor
microarrays reported previously (Parker et al., 2009)—onlymuch
cheaper.

Discrimination of Hepatotoxic MOAs
Following Chemical Exposure in Rats
The LSTNR method, like many others, can discriminate among
disease conditions with known molecular signatures (such
as breast cancer) in spite of the heterogeneity in the gene
expression profiles among patients because the transcriptional
signatures are often overt. In the case of specimens deposited
in TCGA, the evidence supporting the classification of each
specimens is a combination of both histopathological criteria
and transcriptional profiling, an approach pioneered almost two
decades ago and refined since by Perou and others based on
microarray data (Perou et al., 2000; Sørlie et al., 2001; Parker
et al., 2009). This means that, although successful in phenotyping
breast cancer subtypes, LSTNR implementation in the context of
breast cancer subtypes is somewhat recursive.

The same cannot be said when characterizing transcriptional
signatures from data generated by toxicogenomics experiments,
in which healthy specimens are exposed transiently to chemical
insults and assayed soon after to understand which genes respond
to the exposure, and to what extent their response is coordinate
or follows particular signaling pathways (also known as the mode
of action, MOA). Usually, these studies use large sample sizes, but
that is often the case because specimens tested for the sameMOA
are often exposed to more than one eliciting chemical agents,
each with minimal sample sizes. In the end, this means most
toxicogenomics datasets cannot be split into realization subsets,
and so they must be inspected with single-shot analyses. For
all these reasons, identifying MOA from toxicogenomics studies
can be more challenging than transcriptional profiling of disease
phenotypes.

To assess the performance of LSTNR for toxicogenomics
analyses, we used a MOA training RNAseq dataset
generated through the MAQC phase III SEQC crowdsource
toxicogenomics effort (TGxSEQC). The TGxSEQC training
dataset consists of liver transcriptomes from male Sprague-
Dawley rats following exposure to hepatotoxicants (Gong et al.,
2014; Wang et al., 2014). The experimental designed included
five known modes of action, each induced by exposure to
three different chemical agents unique to each MOA, with a
replicate size of N = 3 per combined MOA × Agent group. In
all, the experimental design comprised 45 individual specimens
equally split among 15 different agents and stratified under
5 MOAs with N = 9. Because the purpose of this particular
TGxSEQC crowdsourced experiment was to create a benchmark
training set to attest performance of newly developed statistical
pipelines, additional levels of complexity were introduced in
the experimental design by controlling their exposure scheme:
some of the chemical agents were supplied by intraperitoneal
injections, and others by oral gavage using either nutritive (corn
oil) or non-nutritive (water) delivery vehicles. In addition to the
45 agent-exposed specimens, an additional set of 9 livers was
also collected as a control group from male rats that underwent
mock treatments by different combinations of exposure schemes
(i.e., intraperitoneal vs. oral gavage, and corn oil vs. water as oral
vehicles).

The TGxSEQC dataset consisted of 30,852 RefSeq-annotated
transcripts (rn6 reference genome) uniquely aligned reads, which
we refer to as “genes” hereafter for simplicity. The best-fit
model to the average RPM-values within annotated transcripts
across all 54 individual liver specimens was a 3-parameter
Weibull distribution function P(y) ∼ Weibull3P(y;α,ß,γ) where
y= RPM. We then performed independent filtering with respect
to the Weibull scale parameter α = 6.7 RPM and retained
9,593 transcripts for differential expression analysis (Table 4).
Next, to determine the resolution level of detected reads per
gene, we calculated transformant B-values from within-gene
RPM averages by GLM with linear predictor B∼(y–γ)ß−1 and
normalizing link function η ∼ 1/B as appropriate for fixed-
ß Weibull distributions (Nelder and Wedderburn, 1972; Aitkin
and Clayton, 1980). Then, transformant B-values were tested
by gene×MOA multivariate ANOVA, i.e., irrespective of the
chemical agent, route, or nutritional status of the vehicle of each
specimen. We identified 3,975 significantly resolved genes, based
on a transformant B FDR p < 0.05 criterion (Table 4). Gene
resolution weights were estimated from the cumulative hazard
rate of the gene × MOA multivariate ANOVA significance
scores of B. Also, we added the threshold parameter γ = 2.5
× 10−3 RPM to each individual replicate across all transcripts,
and estimated Log2FC differences relative to the average of
mock-treated controls. Then, we performed a resolution-weighed
gene × MOA multivariate ANOVA of Log2FC differences.
We detected a total 5,983 SGs; among them, we found 5,864
DEGs and, of those, 1,953 were also LSTNRs. The list of
LSTNRs included 386 non-protein encoding transcripts based
on their RefSeq annotation (i.e., XR_, XM_, or NR_ accession
prefix), which we discarded from subsequent analysis. The
remaining 1,567 LSTNRs corresponding to mRNA transcripts
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TABLE 4 | Step-by-step output as numbers of qualifying genes along the LSTNR

analytical pipeline for liver transcriptomes from male Sprague-Dawley rats after

toxicant exposure based on the mode-of-action training RNAseq dataset by the

MAQC phase III SEQC crowdsource toxicogenomics (TGxSEQC) effort (GEO

accession number: GSE55347).

Criteria Hepatotoxicity:

Mode-of-Action Rat

Models (N = 54)

Genes with uniquely aligned reads 30,852

Distribution of gene-wise RPM means P(y) ∼ Weibull3P (y;α,ß,γ);

y = RPM

α = 6.7 RPM

ß = 0.38

γ = 2.5 × 10−3 RPM

Independent filtering:

Genes with average RPM y> α 9,593

Linearized normalizing transformant:

GLM Linear Predictor

(y–γ)ß−1

Transformant two-way ANOVA:

resolved genes across groups with respect to

gene-wise mean

3,975

Resolution-Weighed ANOVA:

Significant Genes (SGs) with FDR adj. p < 0.05 based

on differences in resolution-weighed RPM log-fold

changes (Log2FC) relative to baseline condition

5,983

Differential expression:

DEGs = subset SGs that exhibit both:

• resolution-weighed effect size above 5% of

gene-wise variation (δLog2FC >0.3×σSSR); and

• post-hoc pairwise-significant Log2FC differences

between at least two MOAs (Student’s t-test

p < 0.05)

5,864

Reproducibility:

LSTNR genes = subset of SGs that exhibit both:

• resolution-weighed effect size above 5% of

gene-wise variation (δLog2FC >0.3×σSSR); and

• at least one group with Log2FC differences vs.

baseline greater than 95% Tolerance Interval of

gene×group residuals among SGs (post-hoc

pairwise-significance not required)

1,953

Expectable DEGs:

DEGREEs = Ensembl-annotated DEGs with a

reproducible expectation estimate (i.e., DEGs that are

also LSTNRs) and official Entrez symbol

1,510

Transcriptional profiling:

Profiler DEGREEs = top DEGREEs ranked by

retrospective statistical power with monotonically

decreasing within-gene effect sizes 1Log2FC

65 Profiler DEGREEs

Diagnostic targets:

Biomarkers = minimal subset of Profiler DEGREEs

with predictive discriminant power based on

sequential partition tree analysis (ROC scores>0.9

per phenotype)

Ucp3, Tmem86b, Sugct,

Acaa1b, Hadhb, Tfam,

Acaa1a, and Gsdmd

(NM_ accession prefix) were consolidated into a final list 1,510
DEGREEs with official non-duplicate Entrez gene symbols. Then,
after comparing the ranks of retrospective statistical power and
within-DEGREE effect size for Log2FC measurements across
MOA groups, we identified aminimal set of 65 Profiler DEGREEs
for transcriptional profiling (Table 4; see Table S2 for gene
symbols).

We asked to what extent the DEGREEs detected by our
method captured the underlying organization of specimens
into MOA groups. Using two-way unsupervised hierarchical
clustering (Ward method), we found the set of 1,510 DEGREEs
sorted not only 43 of the 45 treated specimens into their original
MOA and chemical agent groupings, but also recovered their
stratification by route of exposure, nutritional status of vehicle,
and one of two means of pathway activation: receptor mediated
(RM) and non-receptor mediated (NRM). We also detected five
co-expression patterns among DEGREEs, which were supported
by separate clustering of correlation scores for the differential
expression of DEGREEs across MOA groupings (Figure 4A).
Still, we found that clustering based on 1,510 DEGREEs resulted
in interleaved MOA groups, except for PPARA (Figure 4A).
This kind of transcriptional cross-talk among 1,510 DEGREEs
has been previously reported for this same dataset, suggesting
that downstream pathways elicited by different chemical agents
under the same MOA classification can converge to the same
regulatory hubs through different molecular cascades and lead
to distinctive transcriptional effects; conversely, chemical agents
classified under differentMOA can exhibit similar transcriptional
signatures just as well (Funderburk et al., 2017).

Next, we investigated the capacity of Profiler DEGREEs to
segregate MOA groups, and their underlying strata, compared
to the pool of DEGREEs. Unsupervised clustering based on
the 65 Profiler DEGREEs revealed seven MOA clades among
treated specimens (I-VII) and, like its larger counterpart with
1,510 DEGREEs, five minimal gene co-expression patterns (a–e)
(Figure 4B). Using only Profiler DEGREEs also recovered the
experimental stratification of the treated specimens with the
exception of 6 specimens interspersed between the Cytotoxic,
DNA damage, and CAR/PXR MOA groups (Figure 4B). Yet,
hierarchical clustering by Profiler DEGREEs also segregated each
of the MOA from each other, unlike clustering with the entire
pool of 1,510 DEGREEs (Figure 4B). This highly discriminative
capacity indicates that Profiler DEGREEs represent the most
discriminative subset of DEGs to extract transcriptional
signatures.

The ability to segregate entire MOA groups from each other
based on Profiler DEGREEs allowed comparing transcriptional
profiles of each MOA across the five expression patterns.
Among RM MOA groups, PPARA showed the strongest and
most dissimilar transcriptional response; it was also the MOA
with the most pronounced effects across the entire dataset
and across all co-expression patterns (Figure 4C). Both Ahr
and CAR/PXR exhibited modest Log2FC levels relative to the
effects elicited in the PPARA groups; interestingly, expression
regulation trends in Ahr groups were opposite to those in
PPARA across all five expression patterns (a–e), and in three
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FIGURE 4 | LSTNR method analysis of the MOA training RNAseq dataset by the TGxSEQC crowdsource effort. (A) Heatmap plots of expression differences (top) and

Pearson’s r correlation coefficients (bottom) for 45 Sprague-Dawley rat liver specimens exposed to toxic agents classified under 5 different MOAs (rows; N = 9 per

MOA) and 1,510 DEGREEs (columns) based on Log2FC measurements vs. the average of 9 mock-treated controls. The expression heatmap of DEGREEs (top) is

colored on a green-black-red gradient scale (left) of Log2FC values (green downregulated; black, same; red, upregulated); the correlation heatmap of DEGREEs

(bottom) is colored on a blue-white-red gradient scale (left) of Pearson’s correlation coefficient r-values (blue, negative correlation; white, not correlated; red, positive

correlation). Order of DEGREEs in both heatmaps (columns) is illustrated by the column dendrogram in the expression heatmap, and was based on two-way

unsupervised hierarchical clustering of DEGREEs and specimens based on Log2FC expression differences (expression heatmap, top). Dot plots on the right of the

expression heatmap (top) depict experimental classifications of treated specimens based on: means of transcriptional activation of MIEs (left to right: non-receptor

mediated, or NRM vs. receptor-mediated or RM); MOA (left to right: Ahr, CAR/PXR, Cytotoxic, DNA damage, PPARA); route of exposure (left to right: intraperitoneal

injection, or oral gavage); and nutritional status of vehicle (left to right: not nutritive solution, or nutritive oil-based vehicle). Inferred specimen clades, represented in the

(Continued)

Frontiers in Genetics | www.frontiersin.org 15 May 2018 | Volume 9 | Article 176

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Lozoya et al. LSTNR Method for DEG Analysis

FIGURE 4 | expression heatmap (top) by row dendrograms and their respective MOA × Agent labels, are shown with alternating orange and blue coloring for clarity.

(B) Expression heatmap for two-way unsupervised clustering of Log2FC differences, as in (A), using only 65 Profiler DEGREEs (columns). Profiler DEGREE columns

are labeled by their respective Entrez gene symbol (top); the names of 8 biomarkers selected from the set of Profiler DEGREEs by sequential partition tree analysis are

shown raised and in bold. Coloring of the row dendrogram and its labels (left) represent inferred grouping of treated specimens into 7 MOA clusters (I-VII). Inferred

co-expression patterns represented by the column dendrogram (bottom; a–e) are shown with alternating gray and black coloring for clarity. Top left: heatmap is

colored on a green-black-red gradient scale (top left) of Log2FC values relative to mock-treated controls (green, downregulated; black, same; red, upregulated). Dot

plots on the right of the expression heatmap depict experimental classifications of treated specimens based on route of exposure (left to right: intraperitoneal injection,

or oral gavage) and nutritional status of vehicle (left to right: not nutritive solution, or nutritive oil-based vehicle). (C) Average Log2FC expression ± s.e.m. based on

Profiler DEGREEs, split into co-expression patterns from (B), and separated by experimental MOA classification. (D) Concordance of relative expression estimates

normalized to house-keeping glyceraldehyde-3-phosphate dehydrogenase (Gapdh) gene between RNA-seq and qPCR experiments for eight annotated gene

symbols across hepatotoxic agents with DNA damage MOA; all assays were performed from cDNA templates derived using the same total RNA extracts for both

techniques (N = 3 per hepatotoxic agent); qPCR assays were performed in technical duplicates per reaction plate with matched untreated samples as controls (CTR).

Overall linear regression (regression mean: solid black line; ±95 CI of regression: dashed black lines) corresponds to qPCR-based average normalized Log2FC

expression levels of each gene (x-axis) vs. normalized Log2FC expression measurements per sample among mRNA transcripts with matching gene symbols detected

by RNA-seq (y-axis). (E) Enriched signaling pathways and (F) inferred upstream regulators for Profiler DEGREEs with |Log2FC|>0.82 under each MOA cluster

identified in (B), based on Ingenuity Knowledge Base ontologies; equal analyses are depicted in regards to (G) metabolic pathways and (H) inferred disease and

biological functions, respectively. Pathways depicted in (E,G) heatmaps showed enriched representation p < 0.05 in at least one MOA cluster; upstream regulators

and functions in (F,H) showed both enriched representation p < 0.05 and predictive |z| > 2.0 in at least one MOA cluster. Intensity of purple coloring in pathway

heatmaps (E,G) represent increasing levels of significance; coloring of activation heatmaps (F,H) on a blue-white-orange gradient scale depicts prediction z-score

values (blue, inhibited; white, inactive; orange, activated). (I) Expression heatmap for two-way unsupervised clustering of Log2FC differences based on the 8

biomarkers highlighted in (B) (columns). Coloring of the row dendrogram and its labels (right) matches the 7 MOA clusters (I-VII) depicted in (B). Top right: heatmap is

colored on a green-black-red gradient scale (top left) of Log2FC values relative to mock-treated controls (green, downregulated; black, same; red: upregulated). Dot

plots (left) depict experimental classifications of treated specimens based means of transcriptional activation of MIEs (left to right: non-receptor mediated, or NRM vs.

receptor-mediated or RM). N = 9 independent specimens per MOA classification with three different hepatotoxic agents each (N = 3 per MOA×Agent combination):

Ahr (3ME = 3-methylcholantrene, 300 mg/kg/day, 5 days; NAP = β-naphthoflavone, 1,500 mg/kg/day, 5 days; LEF = leflunomide, 60 mg/kg/day, 5 days); CAR/PXR

(ECO = econazole, 334 mg/kg/day, 5 days; MET = methimazole, 100 mg/kg/day, 3 days; PHE = phenobarbital, 54 mg/kg/day, 5 days); Cytotoxic (CAR = carbon

tetrachloride, 1,175 mg/kg/day, 7 days; CHL = chloroform, 600 mg/kg/day, 5 days; THI = thioacetamide, 200 mg/kg/day, 5 days); DNA damage (AFL = aflatoxin B1,

0.3 mg/kg/day, 5 days; IFO = ifosfamide, 143 mg/kg/day, 3 days; NIT = N-nitrosodimethylamine, 10 mg/kg/day, 5 days); and PPARA (BEZ = bezafibrate, 617

mg/kg/day, 7 days; NAF = nafenopin, 338 mg/kg/day, 5 days; PIR = pirinixic acid, 364 mg/kg/day, 5 days). Log2FC measurements were calculated relative to 9

vehicle-only mock-treated controls. The TGxSEQC training dataset comprises 54 total individual specimens with reads aligned onto 30,852 RefSeq-annotated

transcripts overall. To designate the final list of Profiler DEGREEs, Log2FC of differentially expressed transcripts (resolution-weighed ANOVA FDR p < 0.05 and

δLog2FC > 0.3 × σSSR, and both post-hoc p < 0.05 and Log2FC > 95%TISSR in at least one MOA vs. average of controls) annotated as mRNA-encoding (RefSeq

NM_ suffix) were consolidated by the average of Log2FC values under matching and nonduplicate gene symbols from the Entrez database. Reference genome: rn6.

for CAR/PXR groups (a-c). Of the three RM groups, CAR/PXR
exhibited the weakest differential expression levels. In general,
MOA groups with NRM activation show muted expression
effects compared to RM MOAs, in both cases reminiscent of
CAR/PXR expression trends, and with DNA damage agents
showing slightly greater effects than cytotoxic ones (Figure 4C).
Even then, LSTNR analysis produced accurate estimates of weak
differential expression levels, such as those elicited by DNA
damage MOA agents, that showed significant concordance with
matching qPCR validation data (Gong et al., 2014) as shown in
Figure 4D.

To infer the biological mechanisms underlying the
transcriptional signatures detected by unsupervised clustering,
we performed pathway enrichment analysis using Profiler
DEGREEs for each of the seven MOA clades separately (I-VII;
Figure 4B) via the Ingenuity R© platform. Profiler DEGREEs in
each MOA clade were filtered for inclusion against a threshold
|Log2FC|>0.82 (i.e., >1.76 expression fold-changes vs. average
of controls). This threshold is the LSTNR filter, and equals
the 95% tolerance interval for SNR = 1 among SGs based
on residuals of gene Log2FC means within MOA × Agent
groups. Expectably, PPARα activation was among the top
enriched pathways, indicative not only of the strength of
differential expression with PPARA MOA agents, but also
of the signature in the AHR and CXR/PXR groups with the
same genes, but with opposite expression regulation. Viewed
together, the top enriched signaling pathways were consistent

with acute-phase inflammation-related mechanisms (e.g.,
IL1, IL12, complement system), transcriptional regulation of
xenobiotic and steroidal pathways (activation of RXR, LXR, FXR,
TR, and estrogen-dependent pathways), and mitochondrion-
linked metabolic remodeling (AMPK and Ca2+ signaling)
(Figure 4E).

The results for signaling pathway enrichment analysis were
further supported by sets of predicted upstream regulators
via activation z-scores (Figure 4F). In particular, from the
perspective of the PPARA MOA group, exclusively represented
by Clade VII, the strongest predicted regulator was PPARA
itself, and was also one among three other inferred activated
factors characteristic of PPAR signaling (PPARG, PPARD, and
PPARGC1A). Other factors included KLF15 and PML, showing
opposite activation scores from each other, and both of which
modulate TP53 activation (also predicted) by regulating the
activity of lysine acetyltransferases such as EP300 and KAT6A
in opposite manners (Haldar et al., 2010; Rokudai et al.,
2013). Interestingly, our analysis also inferred the activation of
TCF7L2, a transcription factor known to associate with genomic
enhancers coincident with epigenetic H3K27ac post-translational
modifications (Frietze et al., 2012). Activation of TFAM, the
master transcription factor of mtDNA (Ekstrand et al., 2004)
and one of the upregulated Profiler DEGREEs in PPARA MOA
specimens based on our analysis (Figure 4B), was also predicted
by the transcriptional signatures of the rest of the Profiler
DEGREEs (Figure 4F).
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Inferred regulation scores for upstream regulators were
opposite to those in PPARA specimens for all other clades, except
for clade IV. The distinct behavior of clade IV, which included
two of the three liver specimens treated with carbon tetrachloride,
did present distinctive enrichment of LXR/RXR activation and
atherosclerosis signaling pathways, along with inferred activation
of PPARA and KLF15. Those results for clade IV were consistent
with known effects of carbon tetrachloride, a traditional model
of chronic liver injury that elicits fibrogenic activity in hepatic
stellate cells and loss of fenestration along liver sinusoids due
to thickening of basal membranes with fibrillar collagens; both
these responses are relayed via LXR signaling (Beaven et al., 2011;
Xing et al., 2016). In this context, activation of PPAR signaling
would offer a counteracting mechanism to deactivate fibrogenic
stellate cells; in fact, PPARA is a known transcriptional regulator
with reported protective roles against steatosis in hepatocytes
(Tsuchida and Friedman, 2017).

When inspected from a metabolic standpoint, pathway
enrichment analysis pointed to three pillars of mitochondrial
function: fatty acid β-oxidation, degradation of xenobiotic agents,
and sourcing of TCA cycle intermediates via amino acid
catabolism (Figure 4G). The same predictions were inferred
based on the activation z-scores of biological functions in
the Ingenuity Knowledge Base (Figure 4H). Clade IV was the
least enriched for pathways involving lipogenic activity, perhaps
indicative of stalled fatty acid synthesis in steatotic hepatocytes
(Ogrodnik et al., 2017). Once again, clade VII (i.e., PPARA
MOA group) presented the most overt levels of significance
and predictive inference, and predicted the opposite biological
response with respect to all other clades, except for clade V
(Figure 4H).

Of note, clade V consists of two agents from different MOA
groups: thioacetamide (THI) from the cytotoxic MOA group,
and N-nitrosodimethylamine (NIT) from the DNA damage
group (Figure 4B). Still, the ability of THI to elicit secondary
oxidative DNA damage has long been reported in its function
as a free-radical generator (Clawson et al., 1997). Enrichment
analysis and predicted biological activities suggested that both
agents under clade V elicited increased biosynthesis of ketogenic
precursors, oxidation of long-chain fatty acids, defective glucose
metabolism, and hepatic steatosis—all of which are processes that
synergize withmitochondrial respiration and rely on the integrity
of the mitochondrial genome. We interpreted the combination
of predicted glucose disorders and enhanced metabolism of
ketogenic intermediates triggered by exposure to clade V agents
to have a compensatory function in response to mtDNA damage.
In a sense, these endogenous responses to NIT and THI exposure
would be analogous to the effects of ketogenic diets in the Deletor
mouse model, in which high-fat feeds ameliorate the chronic
bioenergetic crisis that stems from defective maintenance of
mtDNA integrity and copy number (Ahola-Erkkilä et al., 2010).

Last, we performed sequential tree partitioning analysis of
Profiler DEGREEs to extract candidate biomarkers and test
their ability to discriminate MOA groups compared to using
all 65 Profiler DEGREEs. The process of biomarker selection
was a two-tier process: first, tree partitioning analysis was
performed with all MOA groups; then, to preempt disparately

larger transcriptional responses in PPARA MOA groups
from undercutting our analysis, we repeated the partitioning
analysis without including PPARA specimens. We detected
eight biomarkers from both analyses combined: Ucp3, Acaa1b,
Acaa1a, Sugct, Hadhb, Tfam, Gsdmd, and Tmem86b (Figure 4I).
Altogether, these eight biomarkers represented four out of
the five co-expression patterns we identified by clustering all
65 Profiler DEGREEs (Figure 4B). The ability to sort treated
specimens by biomarker-based clustering into MOA clades was
commensurate to that of Profiler DEGREEs with one notable
exception, clade V, split into two well defined biomarker-
based groups: the first one, for NIT-treated specimens, showed
upregulated Gsdmd and downregulated Tmem86b vs. controls;
the second one, for THI-treated specimens, showed upregulation
of Tfam and downregulation of Sugct instead (Figure 4I).
Among the eight biomarkers, Ucp3 showed the most striking
differences among MOAs, and clearly distinguished three types
of transcriptional responses. In the case of the RM Ahr and
CAR/PXR MOAs, the response was consistent with silencing
of Ucp3 expression; instead, RM activation of PPARA MOAs
exhibited the largest levels of Ucp3 overexpression throughout;
finally, NRM activation of cytotoxic and DNA damage pathways
were met by modest upregulation of Ucp3 (Figure 4I).

In principle, the purpose of defining a minimal set of
biomarkers by subsequent refinements of candidate gene
signatures—e.g., DEGREEs down to Profiler DEGREEs, and
Profiler DEGREEs down to biomarkers—merely seeks to
determine a realistic and manageable set of testable target
genes for an experimentalist to carry out validation and
reproducibility assays with at the bench. The underlying
assumption is that the reductive process involved in curating
among candidate targets will not only reflect similar or
improved sample partitioning for the selected gene subset vs.
the original list of candidates (as shown in Figure 4I), but
that the predictive strength of each selected gene improves
as the list of genes becomes smaller with higher statistical
stringency. To test this, we performed bootstrap forest models
using all 1,510 DEGREEs, only the 65 Profiler DEGREEs,
or only the 8 biomarkers as candidate lists vs. the inferred
MOA clusters (I-VII) depicted in Figure 4B; then, we tracked
the predictive strength of the 8 selected biomarker genes
common to all lists in terms of G²—the likelihood-ratio
test—which: (a) represents the relative contribution of a gene
among all others to assigning samples into expected clusters
across bootstrapped partition trees; and (b) approximates a
χ² distribution to estimate the statistical significance of each
gene’s predictive capacity. As we surmised, the contributions of
biomarker genes to MOA cluster assignment showed increasing
significance as the tested candidate gene lists were curated
in favor of genes with more robust expression differences
(Table 5). Notably, Ucp3 ranked as the top contributor
among any candidate genes retained in all tiers of statistical
stringency (Table 5). This last observation agreed with our
earlier interpretation (based on unsupervised clustering of
samples using 1,510 DEGREEs, 65 Profiler DEGREEs, or 8
biomarkers) that Ucp3 overwhelmingly outpaced any other
individual gene in the training dataset in its ability to
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TABLE 5 | Partitioning contribution statistics by likelihood ratio tests of eight

selected biomarkers via bootstrap forest modeling of sample classification under

seven inferred MOA clusters with reference gene lists at different tiers of statistical

stringency (mode-of-action training RNAseq dataset, TGxSEQC; GEO accession

number: GSE55347).

Gene

Symbol

1,510

DEGREEs

65 Profiler

DEGREEs

8 Biomarkers Statistic

Ucp3 8.4178 14.2830 14.5505 G²

(9.89%) (17.12%) (22.92%) (G²gene/G²total , %)

1 1 1 Rank by G² [highest: 1]

0.2091 0.0266 0.0241 p-value [df : MOA Clusters-1]

Tmem86b 0.0000 2.4276 8.5938

(0.00%) (2.91%) (13.54%)

1363 6 2

1.0000 0.8765 0.1977

Hadhb 0.3465 1.4197 8.3181

(0.41%) (1.70%) (13.11%)

83 20 3

0.9992 0.9647 0.2157

Gsdmd 0.0000 0.1950 7.5273

(0.00%) (0.23%) (11.86%)

603 50 4

1.0000 0.9999 0.2748

Acaa1b 0.0000 2.3052 7.3439

(0.00%) (2.76%) (11.57%)

142 9 5

1.0000 0.8896 0.2902

Acaa1a 0.4146 2.1847 6.5803

(0.49%) (2.62%) (10.37%)

61 12 6

0.9987 0.9020 0.3614

Tfam 0.0000 2.2218 6.3974

(0.00%) (2.66%) (10.08%)

1331 10 7

1.0000 0.8982 0.3802

Sugct 0.0000 0.0000 4.1599

(0.00%) (0.00%) (6.55%)

1308 56 8

1.0000 1.0000 0.6551

assign samples to their inferred MOA cluster memberships
(Figure 4I).

Differentially regulated Ucp3 expression across MOAs
is particularly relevant in the context of mitochondrial
metabolism. Besides functioning as an uncoupler of oxidative
phosphorylation, Ucp3 also facilitates fatty acid metabolism
and ROS regulation in mitochondria (MacLellan et al., 2005),
perhaps through a role for fatty acids as competent ROS
scavengers (Lemke et al., 2014). We interpreted the stark
contrasts between MOA groups on the basis of Ucp3 expression
alone to be indicative of remodeled lipid store management in
cells, perhaps to alleviate insults on mtDNA integrity or ROS
imbalances. This interpretation is supported by the functions of
all other biomarkers detected by the LSTNR method (Figure 4I):

(a) Sugct, an enzyme involved in lysine degradation that
metabolizes glutarate (Marlaire et al., 2014); (b) Acaa1a and
Acaa1b, both enzymes that participate in lipid metabolism in
peroxisomal compartments (Schram et al., 1987; Ferdinandusse
et al., 2001); (c) Hadhb, a critical subunit of the mitochondrial
trifunctional protein that governs fatty acid beta-oxidation inside
mitochondria (Spiekerkoetter et al., 2004); (d) the gene encoding
for lysoplasmalogenase, Tmem86b (Braverman and Moser,
2012); (e) Gsdmd, or gasdermin D, a lipid-porating protein that
effects pyroptotic cell death during inflammation (Rathkey et al.,
2017); and (f) Tfam, the master transcription factor for mtDNA
(Woo et al., 2012; Stiles et al., 2016).

From a biological perspective, implementation of the LSTNR
method unveiled different levels of transcriptional cross-talk
in response to chemical exposure. Perhaps unsurprisingly,
the ability to discriminate different forms of liver toxicity
by transcriptional profiling was founded on maintenance of
mitochondrial function, in particular by remodeling lipid
metabolism to counterbalance toxic effects on aerobic respiration
machinery. Still, the LSTNR method did harbor one particular
strength: it provided a systematic strategy to distinguish between
interconnected transcriptional signatures and characteristic ones
based on tiers of statistical stringency. In that regard, the
different tiers of differential gene expression that LSTNR dissects
may outline the difference between targeted (or causal) triggers
and their secondary (or consequential) effects in transcriptional
responses to toxicants. We believe these types of results from
LSTNR implementation, as shown by the analysis of the
TGxSEQC dataset, reflect the underlying basis of bottom-up
transcriptional networks that become more intertwined as more
gene nodes are added—and yet, the LSTNR method can unravel
them systematically from the top down.

DISCUSSION

Independent Filtering in LSTNR: Data
Worth Making Is Not Always Worth
Keeping
A key element of RNAseq analysis is choosing a sensible
threshold that reflects the dynamic range of gene detection based
on total aligned reads from a sequencing run. In our analyses of
the TCGA and TGxSEQC datasets, we used the scale parameter
α of a 3-parameter Weibull fit to gene RPM means as the
independent filtering threshold. Mathematically, this ensured no
more than 63% of genes with aligned reads will be retained for
analysis, since by definition the α parameter is the 37th percentile
of a Weibull-distributed variable (Aitkin and Clayton, 1980). In
contrast, we found that our approach to independent filtering,
based on a lognormal distribution, estimated a dynamic range
that was valid for every pseudogene in the EPIG-seq in silico
dataset. This outcome, which rarely occurs in the analysis of bona
fide experimental data sets, is consistent with using simulated
data since: (a) pseudogene averages in statistical groups are
prescribed under known patterns for all pseudoreplicates; and
(b) read count variation is modeled around those fixed averages
across the entire dataset. Given these properties of simulated
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data, it follows that an explanatory parametric fit of pseudogene
averages should include every pseudogene if those gene averages
are also parametrically tailored; if true, the estimated dynamic
range of average RPM-values should be valid for all pseudogenes
and, consequently, all pseudogenes should pass independent
filtering—just as we saw in the EPIG-seq in silico dataset.

It is worth mentioning that the point of independent filtering
has little to do with estimates of relative expression. In fact,
fold-change differences across groups are scored within genes
in RNAseq, meaning differential expression measurements for
individual genes are separate from each other whether they
fall within the dynamic range of detection or not. However,
subjecting all genes to multivariate differential expression
analyses, including underresolved ones indistinguishable from
instrumental noise, undermines the ability to adjust significance
tests for multiple comparisons (Benjamini and Hochberg, 1995;
Tamhane and Dunlop, 2000). Therefore, if DEGs are selected
based on significance scores alone, their numbers will be inflated
(Type I error) if underresolved genes are not discarded ahead of
inferential testing.

Empirical Fitting of Gene-Wise Coverage
It is in this context that effect size filtering at the gene level
becomes particularly relevant to the analysis of deeply sequenced
RNAseq data sets. Depending on the type of experimental design,
additional levels of DEG discrimination may be needed, for
example, when dealing with transient expression differences,
such as mtDNA depletion time courses in DN-POLG cells
(Martínez-Reyes et al., 2016). In time course experiments,
differences in gene expression are expectably smaller between
successive time points than comparisons between start and end
points. With shorter sampling intervals in an experiment come
smaller expression differences—yet instrumental noise, which is
relatively fixed, may be more prominent than the dispersion of
differential expression measurements. This is one major reason
why relying exclusively on pairwise significance tests to detect
DEGs across 3+ groups are prone to Type II errors. If a practical
effect size criterion is not imposed to discriminate genes that
show statistical significance (or not) in RNAseq tests with small
sample sizes, it is difficult to separate between genes whose
significant expression differences are more likely to be real,
rather than anecdotal, in an underpowered experimental design
(Ioannidis, 2005).

Average sequencing depth across detected genes in RNAseq
experiments account predominantly for random dispersion and
instrumental error combined—except in DEGs. In that sense, one
can interpret the behavior of accrued reads in each detected gene
as a fingerprint of how read counts vary with sequencing depth.
From such perspective, the within-gene sample size is the total
number of experimental samples, and the between genes sample
size is the number of genes retained after independent filtering.
One can then “studentize” read count variation across gene ×

group statistical blocks by producing an “image” of transformed
RPM rates. This can be achieved by fitting a generalized linear
model (GLM), which are statistical instruments to account for
magnitude and resolution differences all at once in non-linear
and non-Gaussian systems (Nelder and Wedderburn, 1972).

To perform GLM, it is necessary to restate an observed
probability density function in the general form of the
exponential family. The purpose is to devise a transformation that
turns RPM data into a set of values showing a linear relationship
between samples and their averages, known as a linear predictor
or transformant B(ϑ) [or B in short]; furthermore, if the chosen
linear predictor B yields transformant values whose variation
around within-gene averages behave like a classical distribution
from the exponential family (e.g., normal, binomial, Poisson,
or exponential), then the transformant values of B can be
manipulated algebraically into normally distributed scores using
what is known as a link function η(B) [or η in short]. As a result,
η is a representation of RPM that, unlike RPM-values themselves,
are linear and normally distributed—which meets requirements
for ordinary multivariate ANOVA tests of significance; this is
the basis of GLM (see Supplementary Methods) (Nelder and
Wedderburn, 1972).

The metric of interest when using GLM to model gene-
wise RPM averages is not the actual values of the transformant
B-values, but what those values represent: an instrument to
explain which genes are better resolved based on statistical
evidence about their location in the dynamic range of sequenced
read detection. In that context, significance levels of genes based
on ANOVA testing of the linear predictor B are a proxy for
how robust are the differences between groups within one gene
vs. all other genes based on their RPM data and its non-
linear variation. Therefore, those significance scores rank the
experiment’s sensitivity to changes in each gene. In the LSTNR
method, we used these scores to produce gene “resolution
weights” when testing log-fold expression measurements.

The weight function of choice is the cumulative hazard
of gene significance scores. The cumulative hazard function,
which is the complement of the cumulative density function
in negative logarithmic scale, becomes a score for how strong
is the expectation that read counts from individual genes
estimate “true” relative expression differences between groups.
The cumulative hazard function has many advantages in regards
to how it represents RPM resolution: it can be determined from
bounded population data (i.e., the number of detected genes
is a finite number), it is continuous-valued (i.e., not ordinal),
and monotonically increasing (larger weights for better resolved
genes). Also, it is derived from read count data without being
a direct transformation of read count values; the benefit is that
the same weight can be applied to each gene across samples or
experimental realizations whether net read counts are the same
or not between individual replicates. In the context of RNAseq
output, the behavior of cumulative hazard functions resembles
that of the “tightness” of relative expression measurements
around the mean from sequencing data: genes with low read
counts are poorly detected and yield noisy estimates of log-fold
differences; genes with more aligned reads produce more robust
estimates with increasing coverage; and genes near saturated
sequencing levels plateau to the absolute resolution limit of the
sequencing instrument.

Based on the TCGA dataset, we found the behavior of
resolution weights to be consistent with how read count
differences in RNAseq data behave: genes with better resolution
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will often present either low read counts and large differences
between groups, or high read counts with modest differences
and tight within-group variability. Since RNAseq is based on
PCR amplification, observing tight distributions for abundant
transcripts may occur rarely, since amplification errors are
propagated exponentially. Using separate implementations of the
LSTNR method in each individual realization ameliorated the
impact of such features, all too common in noisy RNAseq data.
In effect, resolution scaling in the LSTNR method adjusted for
differential expression tests for exponential propagation of PCR
errors.

In theory, there is an additional benefit worth noting that
LSTNR offers. GLM with canonical link functions relies on
the statistical sufficiency of exponential family distributions,
and the resolution weights of genes are derived from linear
predictor ANOVA based on ranks, not scores, of statistical
significance. If individual experimental replicates are a true
representative sample of a population, and their distribution
belongs to the exponential family (as implemented in the
LSTNR method), then a notable statistical corollary follows:
the resolution power of gene detection from one experiment
is valid for separate realizations from the same population. In
practical terms, this means the resolution weights for genes
detected in one study are valid for any additional sequencing
of its replicates, entire repeated experiments, and replicate
studies—regardless of sample size or sequencing depth. If true,
the GLM basis of the LSTNR method makes it a particularly
attractive pipeline to determine consensus resolution weight
matrices from small training sets heading into consolidatedmeta-
analyses of much larger cohorts. As our findings suggests, the
use of LSTNR-derived gene weight matrices would protect DEG
analysis against detrimental batch effects and subsampling errors,
both of which are characteristic of epidemiological and clinical
studies.

Detecting DEGS by Resolution-Weighed
Multivariate Analysis in the LSTNR Method
The customary methods of inferential testing among multiple
groups are ANOVA models because of their computational
efficiency and ease of implementation. The main caveat of
ANOVA models pertains statistical power, which strongly
depends on sample sizes, normally distributed responses, and
homoscedasticity across statistical blocks. These requirements
are a major impediment to the management of RNAseq data
sets; for one, sample sizes are limiting in RNAseq applications
due to cost constraints, since sequencing reagents, equipment
and necessary computational support to convert raw sequencing
output into genome-aligned reads are all expensive. In regard to
normality of measurements, it is common practice to represent
expression levels as log-transformed read counts, such that
expression fold-changes between groups become arithmetic
differences between means with distributions that approximate
normality; this is not only questionable for most RNAseq
experiments, mainly due to the impedingly small sample sizes
mentioned earlier, but also insufficient as it does not address lack
of homoscedasticity.

Log2FC values, which are read count ratios, are a
measurement of relative expression levels for a gene between
conditions; however, Log2FC values by themselves do not
offer any information on their own measurement resolution
because the read counts used to estimate them are “divided out.”
Calculating significance scores based on Log2FC values is only
statistically fair if all genes show equal levels of read coverage or,
as in the LSTNR method, if relative expression measurements
are adjusted to reflect different resolution levels among detected
genes. Introducing resolution weights to multivariate ANOVA
testing of relative expression differences posited attractive
statistical advantages. In principle, resolution scaling of log-fold
differences should: (a) improve homoscedasticity across genes,
as shown in Figure 2D; (b) discriminate between highly variable
(largest fold-differences) and highly granular (largest read
counts) genes, as shown in Figures 2C, 3B; and (c) prioritize
genes whose prospective differential expression are the most
reproducible should RNAseq experiments be repeated. Above all
else, the issue of reproducibility described in (c) was the reason
behind our split-pool analyses approach to the TCGA dataset,
and the identification of a consensus set of Profiler DEGREEs
(see Table 3).

When we analyzed the breast cancer dataset from TCGA, we
found large discrepancies in the number of significantly resolved
genes among separate analyses, yet the number of SGs was very
consistent across the board. In our view, this illustrates the
main strength behind the LSTNR method: whether particular
sample groupings lead to statistically significant dispersion in
RPM-values in one subset vs. another is less relevant than
the actual ranking of their relative resolution within replicate
experiments. Our interpretation is based on the premise that
estimates of variability in observed RPM-values within genes
are representative of how accurately they were detected by
instrumentation with respect to each other, not whether accuracy
in sequencing was exactly the same for all detected genes between
two different replicate experiments. In that sense, our findings
showed how coupling of individual sequencing resolution
of genes with relative expression differences in the LSTNR
method alleviates discrepancies in the number of detectable
SGs across replicate experiments, and performs well when the
statistical groups are well-defined in advance—e.g., treatments,
phenotypes, controls, etc.

The LSTNR Method Can Estimate Signal,
Noise, and Reproducibility Benchmarks
Benchmarking the expected dispersion range in RNAseq output
is the foundation to a power analysis that outlines what are
the smallest differences to expect ahead of deeper sequencing;
often, though, access to RNAseq and costs are too prohibitive
to pursue any benchmarking efforts. In such cases, the same
projection for expected dispersion ranges can be used as a
practical signal-to-noise (SNR) threshold of reproducibility that
a select subset of genes can be validated against, even if the
expression differences measured with RNAseq data for those
genes were statistically significant or not. A benchmark SNR
threshold of within-gene dispersion in sequenced RPM-values
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is a key metric for experimentalists, because it helps justify or
rule out additional rounds of sequencing (or patient recruitment
in clinical settings) when the statistical significance of any
transcriptional differences is marginal—or, if all else fails, to shift
focus to better experimental alternatives or re-design a project
altogether.

To perform relative expression analysis, we determined a
reference expression value in each gene equal to the average
log2(RPM) in a reference control group. The advantage of
establishing a fixed “null hypothesis” reference, instead of
using the distribution of samples in the control group, is that
sample means and variation from individual replicates can
be estimated for all groups, including the baseline condition,
and before inferential testing of significance. The benefits are
many: in practice, RNAseq experiments often produce expression
measurements that, in retrospective, are underpowered, biased
or unable to detect relevant biological effects because intrinsic
biological variability among specimens is simply too large;
in other cases, cost constraints limit studies using RNAseq
technology to low replication models (Conesa et al., 2016).
Faced with these challenges, one could instead project from
existing data (even if it is only available for control samples) how
large the dispersion in RNAseq output will be; for example, we
calculated the predicted 95% tolerance intervals around themean
Log2FC measurements as a surrogate estimate of expectable
measurement variability. Those tolerance levels, which can be
calculated directly from the residuals of DEGs, represent a
transcriptome-wide signal-to-noise (SNR) thresholds of practical
reproducibility. Furthermore, since these are based on the
variation of individual Log2FC measurements around means
of gene × group blocks, they project the scales of expression
differences that should be reproduced by other techniques (e.g.,
targeted qPCR) or in repeated experiments with reasonable
sample sizes (e.g., 95% prediction intervals). In the case of the
simulated EPIG-seq data, our results suggested that dispersion
of Log2FC measurements was roughly the same whether it was
calculated based on all genes passing filter or only on statistically
significant ones (Figure 2G). This entails that SNR-based criteria
for reproducible differential expression can be established ahead
of statistical testing based solely on the distribution of Log2FC
residuals. In practical terms, would allow confirmatory qPCR
assays to be designed from low replication RNAseq studies,
simply because noise benchmarking does not require detecting
DEGs.

We must point out, going back to the EPIG-seq in silico
dataset, how the 73 patterned pseudogenes that did not match
their simulated trends originated from prescribed in silico
patterns A, C, or E (Figure 2E). All these three patterns show
higher average expression levels in all treatment groups vs. the
baseline average; in contrast, the matched patterns B and D
both exhibit a dominant downregulation trend: expression in
pattern B pseudogenes decreases further when looking across
treatment groups, and patternD exhibits a return to baseline after
an “expression spike” in the first treatment group (Figure 2H).
These results, which suggest that downregulation trends are
easier to discriminate than upregulation ones, may simply
reflect the fact that resolution is finite—meaning the number

of possible values for RPM differences is countable, since they
are ultimately based on integer-based read counts. This implies
that, when the number of read counts drops relative to a
control, it reduces the number of combinations available to
measure gene expression ratios. To clustering algorithms, larger
downregulation differences may become easier to discriminate as
they behave more like piecewise jumps. In contrast, differences
of equal magnitude, but upregulated relative to controls, tend
toward a continuum because the scale of possible values is refined
with increasing numbers of reads per gene—and, by similar
logic, upregulation differences are harder to discriminate by
clustering analysis. Such behavior of countable differences in read
counts has somewhat intuitive implications: for genes with low
coverage to be detected as differentially expressed, both the net
and proportional differences in read counts between groups must
be large and far from the instrumental background so as to be
more accurate and less piecewise; for genes with high read counts,
significance is possible for smaller and more precise proportional
differences, but is only justifiable if the variation in net read
counts is also tight. Above everything else, these are the governing
premises behind our design strategy for the LSTNR method.

Co-expression Patterns Detected Through
LSTNR Method Are Reproducible at
Different Statistical Stringency Levels
To define candidate biomarkers for different transcriptional
signatures, the LSTNR method defines a subset of Profiler
DEGREEs, equal to the largest subset of ranked DEGREEs with
monotonically decreasing retrospective statistical power (≪π≫

>90%) and effect size 1Log2FC at the same time. The rationale
behind this approach is to maximize discriminatory potential
among transcriptional signatures of each breast cancer specimen
by accounting for the largest possible differences between
subtypes (i.e., effect size) while minimizing the commensurate
false-positive rate projected from the available experimental data
(statistical power).

In both experimental datasets, Profiler DEGREEs matched the
discriminant capacity of other pipelines, but with considerably
less genes overall. The strongest evidence for this came from
our analysis of the TGxSEQC training dataset. If stratified by
agent, the TGxSEQC dataset is a 15-group experimental design
with minimal replication level (N = 3). Hence, it cannot be
split into realizations for parallel testing, and has to be tested
through a single-shot analysis. Another challenge to testing the
TGxSEQC training set deals with prospective statistical power:
given 15 groups, the number of possible comparisons between
them is very large. Therefore, if the analysis is performed
based on pairwise gene expression differences, there is a large
risk of over-correcting for multiple testing. As a result, this
would underestimate the number of DEGs, and limit the
ability to discriminate specimens from different MOA groups.
Consequently, grouping the pool of 45 specimens under too
many categories is detrimental to the statistical power of the
experimental design as a whole. To circumvent this challenge,
and based on the fact that each of the individual chemical agents
belongs to one out of five overarching MOAs, we opted to group
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specimens under one out of five MOA groups with N = 9. Even
then, analysis of the TGxSEQC training set using the LSTNR
method captured additional sample classifications at different
tiers of statistical stringency, based on MOA information alone,
and simply by unsupervised hierarchical clustering. In addition,
each of the three tiers of discriminant power (i.e., based on
1,510 DEGREEs, 65 Profiler DEGREEs, and 8 biomarkers) were
consistent with each other in regards to clustering and detection
of co-expression patterns. Most importantly, each increasingly
stringent filter improved on the ability of its predecessor to
segregate individual MOA groups: clustering by 1,510 separated
MOA × Agent groups, but displayed interlaced strata from RM
and NRM activation modes; based on 65 Profiler DEGREEs,
clustering effectively separated each MOA from all others; and
the 8 biomarkers effectively refined the discriminative power
between NRM cytotoxic and DNA damage MOA strata.

CONCLUSION

We put forth the LSTNR method as an alternative pipeline
to tackle current obstacles in RNAseq analysis: first, it defines
a detection limit for genes with respect to random errors
in instrumental sequencing and read alignment by fitting the
observed distribution of aligned read counts; in return, this
empirical fit offers a data-driven threshold for independent
filtering. Then, the pipeline accounts for non-linear and non-
homogeneously distributed variation in read counts per gene;
this is used to generate a gene-wise resolution score based
on read counts that, when implemented as a weight function,
improves the normality and homogeneity of relative expression
measurements. With the LSTNR method, the improvements in
homoscedasticity by resolution scaling of Log2FC differences
allow experimental designs with multiple groups to be tested
by standard ordinary ANOVA techniques. Furthermore, DEGs
detected by the LSTNR method capture the same transcriptional
signatures at different tiers of statistical stringency with high
accuracy; we found the performance of the LSTNR method was
so robust that it required less genes than previously reported to
discriminate breast cancer phenotypes and hepatotoxic MOAs
using the same experimental datasets (Perou et al., 2000; Cancer
Genome Atlas, 2012; Gong et al., 2014; Wang et al., 2014; Li and
Bushel, 2016; Funderburk et al., 2017). As an added benefit, the

LSTNR method can produce noise benchmarking estimates to
validate RNAseq experiments against by benchtop techniques,
regardless of statistical significance or sample replication levels.
Altogether, these features set the LSTNR method apart as an
agnostic pipeline that: (a) can be programmed for automated
processing of RNAseq data with minimal user intervention; and
(b) can estimate thresholds of experimental reproducibility for
confirmatory assays using RNAseq studies with limiting sample
sizes.
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